Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils Jason Schulthess May 2018 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance #### DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. # Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils **Revision 2** **Jason Schulthess** May 2018 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of NA Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ### **ABSTRACT** Tensile mechanical properties for uranium—10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium—10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low-enriched U–10Mo to be used in the actual fuel plates, therefore DU–10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU–10Mo fuel foils, prepared using four different thermomechanical processing treatments, were conducted to assess the impact of foil-fabrication history on resultant tensile properties. The Y-12 National Security Complex at Oak Ridge National Laboratory (Y-12) provided Idaho National Laboratory (INL) with a cast and machined ~4.1 mm-thick, ~127 mm-wide, and ~182 mm-long plate of DU-10Mo. After receipt at INL, the plate (designated alloy 551) was sectioned into four pieces using wire electric discharge machining (wire EDM), and each piece was homogenized at 1000°C for two hours under vacuum of 5×10^{-6} Torr. These pieces were then individually hot-rolled into foil strips of varying thickness. Additional cold-rolling was performed on three of the four foils to bring the final thickness of each cold-rolled foil to a target of 0.38 mm, representative of the final thickness of actual fuel foils. The four foil conditions studied were as follows: Foil 551-2—additional 50% cold-rolling reduction; Foil 551-3 additional 50% cold-rolling reduction followed by stress-relief annealing at 650°C for one hour; Foil 551-4—additional 20% cold-rolling reduction; and Foil 551-5—no further processing, i.e., hot-rolled only. Due to breach of the protective rolling can, hot rolling of foil 551-5 was terminated early, resulting in a final nominal thickness of 0.53 mm. Sub-size flat sheet-type tensile specimens, with dimensions scaled to 50% (i.e., 50 mm nominal overall length) of the normal sub-size specimen, as specified in Figure 1 of ASTM E8/8M-13, were cut from the finished foil sheets using wire EDM machining. Tests were conducted on specimens with both longitudinal and transverse orientation relative to rolling direction, and at various temperatures between room temperature (per ASTM E8/8M-13) and elevated temperatures (per ASTM E21-10) up to 550°C. This work was conducted under an approve test plan that contained additional requirements and instructions for testing. The following report presents details of the testing system, testing methods, and mechanical properties determined from the test data. Tensile properties of DU–10Mo at room temperature through approximately 400°C determined from the tests conducted herein suggest the material is stronger and has lower ductility than what has been reported previously in the literature. The explanation for these differences has yet to be determined, but is likely related to differences in grain size and/or impurity content. At the highest temperatures tested (550°C), better agreement between the values reported here and available literature was found. As expected, yield and ultimate tensile strength decreased with increasing test temperature. Generally, the yield stress for all foil processing conditions was found to be in the range of 1100 MPa for room temperature tests, and in the range of 200 MPa for tests conducted at 550°C. Ultimate tensile stress was in the range of 1175 MPa at room temperature, decreasing to approximately 225 MPa at 550°C. Elongation increased significantly from 0–2% at room temperature, to 50% or more for the tests at 550°C. Additional details on the observed effects of foil processing condition and specimen orientation on tensile properties are summarized below: #### Yield Strength No significant effect of fabrication history on yield stress was observed at the lowest temperature (room temperature) and highest temperature (550°C) tested. However, tests indicated yield strength differences exist at the intermediate temperatures tested with the 50% cold-worked and annealed and the hot-rolled-only material producing lower yield stress at the intermediate test temperatures. Significant effects of specimen orientation on yield strength were only observed in a few cases (specifically 20% cold-worked material tested at 200°C resulted in lower yield stress in the transvers orientation, and hot-rolled-only material tested at room temperature and 200°C where the transvers orientation resulted in slightly higher yield stress). #### • Ultimate Tensile Strength (UTS) Significant differences in the UTS were noted in the longitudinal direction for the four foils at room temperature, with the difference continuing, but converging as the temperature increased. This difference between each of the four foils was also found to exist in the transvers direction. The 50% coldworked and annealed and the hot-rolled-only material produced lower ultimate tensile stress at room and the intermediate test temperatures, but converged when tested at 550°C. Orientation effects for specimens from the same foil were only noted in the following case: 50% cold-worked at 350°C, in which the transvers direction produced lower ultimate tensile stress. All other tests indicated no significant anisotropy due to rolling direction. #### Slope Slope of the initial section of the stress-strain curve was calculated for each specimen and then averaged across all specimens tested in each temperature group. The average slope in MPa/% and standard deviation for each test temperature are: 20°C, 884.21±13.15; 200–250°C, 417.63±16.81; 350°C, 422.25±14.75; 400–450°C, 320.43±17.88; 550°C, 199.29±24.41. Room-temperature elastic-modulus values reported in the literature are in the low-to-mid 80s GPa range, a,b consistent with our room-temperature test results. #### Ductility Room-temperature ductility was determined for all of the foil conditions tested. Of note, the 50% cold worked and annealed foil (foil 551-3) showed increased ductility compared to the 50 and 20% cold-worked foils. The hotrolled-only foil showed more ductility in the longitudinal direction than any other foil at room temperature, but showed very little ductility in the transverse direction, indicating significant anisotropy at room temperature. a. J. E. Gates, et al., "Stress-Strain Properties of Irradiated Uranium–10 w/o Molybdenum," BMI-APDA-638, Battelle Memorial Institute, Columbus, OH, January, 1958. b. G. Beghi, "Gamma Phase Uranium-Molybdenum Fuel Alloys", EUR-4053e, European Atomic Energy Community, 1968. Ductility increased continuously for all foil conditions as testing temperature increased and was significant for foils tested at 550°C. At 550°C, the ductility for all foil conditions and orientations increased from ~<10% to as much as ~70% in the 50% cold-worked foil in the longitudinal direction (551-2) and, also, ~70% for the 50% cold-worked and annealed foil (551-3) in both directions. The increase in ductility at 550°C was more pronounced for the 20% cold-worked foil than for other foil-processing conditions. For a few specimens in both room-temperature and elevated-temperature cases, the 0.2% offset curve did not intersect the stress-strain curve. Theoretically, ductility would be very small in these cases. When combined with the measurement error evaluated in Table 5, and recognizing that it can be difficult to accurately piece specimens back together for post-test elongation measurements due to roughness at the fracture surface; it is likely that actual elongation values reported are less than the reported values of 3% or less. This specifically includes the following specimens tested at room temperature: 551-2-2 L17, T14; 551-5 T1, and T2; and the following specimens tested at elevated temperature: 551-2-2 T11, and T5, but may impact any specimens with reported elongation values of less than 3%. ### Recommendations for Future Work It is recommended that future work include fractography of selected specimens to determine whether failure mechanisms other than ductile rupture exist and whether fracture initiation sites can be identified. Metallography and microstructural characterization should be completed to characterize grain sizes and other microstructural features that may explain the observed mechanical behavior. Finally, it is recommended that additional testing be conducted on similarly processed material having different impurity content (particularly different carbide distributions) to better understand the range of properties that may be expected in commercially fabricated fuel foils. INTENTIONALLY BLANK ## **CONTENTS** |
1. | BAC | KGROUND | 1 | |----------|---------|---|----| | 2. | TEST | Γ SPECIMEN AND TEST SYSTEM PREPARATION | 3 | | | 2.1 | Test Machine | 3 | | | 2.2 | Force Transducer (Load Cell) | 3 | | | 2.3 | Environmental Furnace Preparation and Setup | 4 | | | 2.4 | High-temperature Miniature Wedge Grips | 4 | | | 2.5 | Strain Measurements and Extensometers | 4 | | | 2.6 | Test Controls and Data Collection | 5 | | | 2.7 | Source of Material and Foil Preparation | | | | 2.8 | Test Specimens and Specimen Dimensional Measurements | 8 | | 3. | RESI | JLTS | 12 | | | 3.1 | Summary of Required Reporting Elements | 12 | | | | 3.1.1 Yield Strength | | | | | 3.1.2 Ultimate Tensile Strength | | | | | 3.1.4 Ductility | | | | | 3.1.5 Recommendations for Future Work | | | 4. | DISC | CUSSION | 19 | | | 4.1 | Calculated Strength Uncertainties | | | 5. | REFI | ERENCES | 29 | | Appe | ndix A | A Additional Figures | 31 | | rr | | | | | . | 4 77 | FIGURES | | | | | alf-sub-size flat tensile specimen fabrication specification. | 6 | | Figur | | achined coupon from Y–12 quartered into sections for rolling. Figure also shows crap containing a visible casting defect that was cut off during sectioning | 7 | | Figur | e 3. Fo | oil 551-4-1 after hot rolling and cold rolling has been completed. | 7 | | Figur | e 4. El | DM pattern showing the cutting diagram for Foil 551-2-2. | 8 | | Figur | e 5. Fo | oil 551-2-2 showing subsection labeling corresponding to the EDM cutting pattern | 8 | | Figur | e 6. In | dividually labeled tensile specimens as cut per EDM pattern for Foil 551-2-2. | 9 | | Figur | e 7. G | auge-marking specimen-support base | 9 | | Figur | p | arking indenter guide plate installed over specimen on support base plate. Punch is laced in one of the guide holes. Finger pressure produces a satisfactory gauge-mark | 10 | | Figur | e 9. St | ainless steel trial specimen showing gauge-mark indentations produced using the narking fixture. The reduced section width is approximately 3.0 mm. The marks nown appear larger than they actually are due to high contrast and lighting angle | | | | SI | 10 mm appear ranger than they actually are due to might contrast and nighting diffic | 10 | | Figure 10. Stress-strain plots for room-temperature and 250°C tensile tests on longitudinal specimens of DU–10Mo foil 551-2 that was prepared by hot-rolling, followed by 50% cold-rolling reduction in thickness. Slope of offset modulus lines (dashed) represents the modulus reduction expected between room temperature and 250°C | 12 | |---|----| | Figure 11. Yield stress in the longitudinal direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures. | 21 | | Figure 12. Ultimate tensile stress in the longitudinal direction for each of the four foil-fabrication conditions. The figure shows the cluster of UTS at 550°C while there is a divergence in the fabrication conditions in the room-temperature and intermediate values. The annealed and hot-rolled-only foils indicate lower UTS values in the room and intermediate temperatures. | 22 | | Figure 13. Yield stress in the transverse direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures. Note that data are not available for foils 551-4 and 551-5 in the transverse direction at 400°C. | 23 | | Figure 14. Ultimate tensile stress in the transverse direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures (200°C), but this seems to reconverge at 400°C. Note that data are not available for foils 551-4 and 551-5 in the transverse direction at 400°C | 24 | | Figure 15. Yield stress for foils cold-rolled to 50% reduction. Note no significant difference in yield-stress values based on rolling direction. No data are available for yield stress in the transvers direction for 350 and 450°C. | 25 | | Figure 16. Ultimate tensile stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in UTS values based on rolling direction. | 25 | | Figure 17. Yield stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in yield-stress values based on rolling direction | 26 | | Figure 18. Ultimate tensile stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in UTS values based on rolling direction. | 26 | | Figure 19. Yield stress for foils cold-rolled to 20% reduction. Note a minor difference in yield-stress values based on rolling direction for 200°C. No transverse data are available for 400°C. | 27 | | Figure 20. Ultimate tensile stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in UTS values based on temperature. No transverse data are available for 400°C. | 27 | | Figure 21. Yield stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in yield-stress values based temperature. No transverse data available for 400°C | 28 | | Figure 22. Ultimate tensile stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in UTS values based on temperature. No transverse data available for 400°C. | 28 | |---|----| | Figure A-1. Minimal area inside furnace to install grip alignment collar, install specimen in grips, ensure proper specimen alignment in grips, tighten grip jaws, remove alignment collar, and install extensometer (when used). Care must be used to prevent damage to specimens or fragile Super Kanthal heating elements. | 33 | | Figure A-2. Inert-gas and cooling-water plumbing at rear of furnace. Metal vacuum hose running down to pump is seen at lower right. Gas piping is all metal or ceramic to prevent oxygen infusion. | 34 | | Figure A-3. Specimen installed in grips inside of furnace chamber, with extensometer installed, ready to begin a room-temperature test. Wires from thermocouples welded to grip jaws are seen above and below extensometer. For size reference, the hex grip-tightening bolt-heads are 16 mm. Grip alignment collar has been removed. | 35 | | FigureA-4. Broken elevated-temperature test specimen as seen through magnifying viewport in furnace door. Lighting is through a narrow window in the door below the viewport. Break is visible at lower portion of reduced section | 36 | | TABLES | | | Table 1. Summarized mechanical properties from Waldron. ¹ | 1 | | Table 2. U–10Mo properties summarized by Ozaltun. ² | 2 | | Table 3. Load-cell calibration record data (12 Nov 2013, INL S&CL). | 3 | | Table 4. Representative average specimen pre-test dimensions from Foil 551–2. | 11 | | Table 5. Dimensional measurement standard deviations from random sampling of 20 specimens | 11 | | Table 6. Measured mechanical properties of DU–10Mo at room temperature. Tested and reported in accordance with ASTM E8/8M-13. Material: DU–10%Mo from plate #551 | 13 | | Table 7. Measured mechanical properties of DU-10Mo at elevated temperature. | 14 | | Table 8. Summary of mechanical properties from the current work. | 20 | | Table A-1. Chemistry report provided by Y-12 for log 3C32-WP-TRN0. Impurity levels over 25 ppm reported. Impurity values less than 25 ppm where provided in the chemistry report from Y-12 but are not reported here. | 36 | INTENTIONALLY BLANK ## **ACRONYMS** DU depleted uranium EDM electric discharge machining FFC Fuel Fabrication Capability pillar INL Idaho National Laboratory SC&L Standards and Calibrations Laboratory (at INL) UTS ultimate tensile strength INTENTIONALLY BLANK ## Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils ### 1. BACKGROUND Tensile properties for rolled uranium—10 wt.% molybdenum (U—10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs that incorporate these alloy foils as fuel. Limited data exist on the property-processing-structure relationship of U—10Mo fuel foils. Most of the available studies reporting properties for U—Mo alloys were conducted in the 1950s and 1960s. For example, Waldron (1958) reports yield stress, ultimate tensile stress, and modulus for U—Mo alloys, where
the wt% of Mo was varied in the alloy and where the heat treatment temperature and time were varied (see Table 1). However, the Waldron report does not provide information relevant to the properties of rolled foils, or the effect of foil-rolling conditions on properties. Table 1. Summarized mechanical properties from Waldron.¹ | Composition wt %
Molybdenum | Prior Heat Treatment
Temp (°C) | Prior Heat Treatment
Time (Days) | Temp of Testing
(°C) | UTS (Tons/sq.in.) | UTS (MPa)ª | Youngs Modulus
(psi x 10 ⁶) | Youngs Modulus
(GPa) ^a | Elongation
(on 1.2") % | |--------------------------------|-----------------------------------|-------------------------------------|-------------------------|-------------------|-------------------|--|--------------------------------------|---------------------------| | 10 | 900 | 7 | 20 | 44.8 | 617.8 | 12.6 | 86.87 | 0.1 | | 10 | 450 | 14 | 20 | 21.3 | 293.7 | 17.3 | 119.3 | 0.8 | | 10 | 900 | 7 | 200 | 37 | 510.2 | 10.7 | 73.77 | 0.5 | | 10 | | | 400 | 26 | 358.5 | 7.5 | 51.71 | 1 | | 10 | | | 600 | 13 | 179.3 | 4.8 | 33.09 | 0 | | 10 | | | 800 | 4 | 55.16 | 6.0 | 41.37 | 3.0 | | 10 | 450 | 14 | 200 | 22 | 303.4 | 13.3 | 91.7 | Nil | | 10 | | | 300 | 13.3 | 183.4 | 15.0 | 103.4 | 0.5 | | 10 | | | 400 | 18.6 | 256.5 | 15.8 | 108.9 | 0.5 | | 10 | 575 | 28 | 400 | 10.8 | 148.9 | 12.2 | 84.12 | 2 | | 10 | | | 600 | 9 | 124.1 | 8.6 | 59.29 | 0.5 | | 10 | | | 800 | 6.3 | 86.9 | 8.6 | 59.29 | 11 | | a. These v | alues are calcu | ılated conversi | ons from the p | oublished data | from [11] for the | he purpose of o | comparison. | | Other previous work by various authors to establish mechanical properties of U–10Mo alloy is summarized by Ozaltun et al. in Table 2. 2 Burkes et al (2009) also summarized previous work reporting mechanical properties of U–Mo alloys. These results are reported based on variation of Mo content in the alloy. Yield stress, ultimate tensile stress, and elongation all increase with increasing Mo content and are attributed to the improved resistance to bulk plastic deformation through increased addition of Mo and associated hardening effect in the γ phase. Burkes et all (2009) compare their results to previously available literature, but note that differences in homogenization treatment, specimen geometry, and strain rates make direct comparison difficult. 3 The previously reported properties (summarized in both [2] and [3]) are only valid for the specific thermo-mechanical treatments considered, and testing was performed at a limited selection of temperatures. Fabrication history and thermal treatment of the alloy can have a significant impact on the resultant mechanical properties. Thus, an expanded set of mechanical properties for various foil-rolling conditions typical of fuel-foil manufacturing is necessary. This work aims to evaluate the mechanical properties of U–10Mo alloys under various representative rolling conditions to inform modeling efforts, fabrication process development, and ultimately, to support fuel qualification and reactor conversion. Table 2. U-10Mo properties summarized by Ozaltun.² | Fuel Foil (U–10Mo) | | | | | | | | | | |--------------------|---------|---------|-----------|-----|------------|-------|--------------|--|--| | Young's | Modulus | Poissor | n's ratio | Dei | nsity | Yield | Yield Stress | | | | °C | GPa | °C | (-) | °C | (kg/m^3) | °C | MPa | | | | 21 | 65.00 | 25 | 0.35 | 21 | 16,750 | 21 | 780 | | | | | | | | 100 | 16,380 | 94 | 760 | | | | | | | | 200 | 16,310 | 205 | 655 | | | | | | | | 300 | 16,230 | 316 | 527 | | | | | | | | 400 | 16,140 | 427 | 474 | | | | | | | | 500 | 16,060 | 539 | 427 | | | | | | | | 600 | 15,980 | | | | | ## 2. TEST SPECIMEN AND TEST SYSTEM PREPARATION ## 2.1 Test Machine The testing system incorporates a standard Instron 3366 table-top test machine, Instron 5 kN load cell, Instron high-temperature wedge grips, and a C-M 1600-series environmental furnace. The system was developed, calibrated, and verified for performing this series of tests. The system includes an environmental-control furnace that allows elevated-temperature tensile testing in an inert-gas environment with low oxygen concentration, preventing rapid oxidation or oxygen embrittlement of the DU–10Mo test specimens. Room-temperature tests on some of these specimens were performed in air to establish baseline properties for this particular material condition. A strain-estimating algorithm was developed using the room-temperature data to establish correlation between machine crosshead displacement and specimen reduced section strain, allowing elevated-temperature specimen strain to be estimated from test-machine crosshead-displacement data. Other factors unique to the elevated-temperature test configuration were also assessed, and methods to account for factors that are not directly measurable in these tests were developed. Further details of the test-system configuration and performance-verification processes are detailed below. ## 2.2 Force Transducer (Load Cell) Load-cell accuracy was verified by the INL Standards and Calibration Laboratory (S&CL) using established procedures. In accordance with ASTM E4-10, the maximum allowable load-cell error is the greater of $\pm 0.50\%$ of any force reading (proportional error) or $\pm 0.25\%$ of load-cell full-scale capacity (fixed error). The load cell was within its calibration time interval for all tests performed. The data sheet from the most recent calibration is replicated as Table 3. Table 3. Load-cell calibration record data (12 Nov 2013, INL S&CL). | Instron Reading (N) (Accuracy +/-1 digit) | Reference Reading (N) | Indicated Error (N) | Error
(% of Instron Reading) | |---|-----------------------|---------------------|---------------------------------| | 0.0 | 0.0 | 0.0 | NA | | 1032±1 | 1034.48 | -2.48 | -0.14 to -0.34 | | 1873±1 | 1877.49 | -4.49 | -0.19 to -0.29 | | 3262±1 | 3267.47 | -5.47 | -0.14 to -0.20 | | 4232±1 | 4237.43 | -5.43 | -0.10 to -0.15 | | 0.0 | 0.0 | 0.0 | NA | | 988.6±0.1 | 991.48 | -2.88 | -0.28 to -0.29 | | 2286±1 | 2291.53 | -5.53 | -0.20 to -0.29 | | 3231±1 | 3236.98 | -5.98 | -0.15 to -0.22 | | 4208±1 | 4214.14 | -6.14 | -0.12 to -0.22 | The potential for force-indication error adds to the uncertainty of the calculated stress values. For the majority of tests, the ASTM allowable-error limit of 0.25% of full-scale capacity is the relevant limiting value and corresponds to ± 12.5 N. For a nominal specimen cross-section of 1.2 mm^2 , this is a maximum potential stress error of ± 10 MPa. However, typical errors within the range of yield strength and UTS measurements during these tests (1000 N) were consistently about 0.30% greater than the machine reading (data obtained from the load-cell-calibration data sheets on file at S&CL). This correlates to errors nominally proportional to the indicated values and smaller than 3 N in the range of interest. For practical purposes, though not assured, the actual applied force appears consistently 0.3% higher than the machine indication. The specimen initial-area error due to initial width and thickness measurement uncertainty is so small (<0.01% of cross-section error) that it is inconsequential. ## 2.3 Environmental Furnace Preparation and Setup The furnace's inert-gas plumbing was modified to include an electrical feedthrough to accommodate additional thermocouple leads for specimen- and grip-temperature monitoring. Thermocouples were welded to the exposed end of the upper and lower grip jaws, immediately adjacent to the jaw-to-specimen contact region. Calibration testing with instrumented surrogate test specimens showed that test-specimen temperature was accurately reflected by the instrumented grip-jaw temperature. Based on these tests, test-specimen temperature during all elevated-temperature testing was inferred from thermally equilibrated grip-jaw temperatures, where both grips were holding constant over time and within 5°C of the target test temperature. A vacuum pump and appropriate isolation valves were also connected to the inert-gas piping system. Cycles of evacuation (with a roughing-type vacuum pump) and argon backfill/purge were completed prior to heating to reduce the oxygen concentration to below 20 ppm, as indicated on an O₂-concentration meter attached to the furnace-outlet gas piping. Typical O₂ concentration values were less than 5 ppm after 4 vacuum/purge cycles. Approximately halfway through the testing, it was determined that the same O₂-concentration values could be obtained after a single cycle of vacuum and argon-gas purge. Argon-gas flow rate through the furnace during heating and testing was 5 l/min (nominal) at a maximum pressure of 10 kPa (gauge pressure inside furnace chamber). ## 2.4 High-temperature Miniature Wedge Grips The original jaw inserts provided by Instron Corp. were made from a soft nickel alloy and were intended for use with pin-loaded specimen-end tabs. The serrations of these jaws were too soft to adequately grip the test specimens. Custom grip jaws were fabricated at INL for the Instron-grip bodies to accommodate the tensile specimen-end tabs used in these tests. These replacement jaws were fabricated from H–13 tool steel, and the specimen contact faces received Surfalloy friction coatings to reliably grip the specimen-end tabs over the full range of temperatures and forces that would be used. Approximately halfway through the testing program, the original Instron grip-tightening mechanism failed in one grip. INL designed and fabricated a new mechanism and replaced the mechanisms on both grip bodies. These new mechanisms performed well throughout the remainder of the testing. They facilitated easier specimen installation and removal from the grips as well. The grip-tightening mechanism failure and replacement with new parts did not
influence any of the test results. An alignment collar was fabricated that holds the grip bodies in alignment while the specimen is installed, and the grip jaws, tightened. The design and use of this alignment collar are discussed in [4]. ## 2.5 Strain Measurements and Extensometers Room-temperature testing was completed using a small 12.7 mm gauge-length extensometer from Epsilon Corp. The extensometer has a measuring range to $\pm 20\%$ tensile strain. At intervals not exceeding 24 hours prior to beginning any test, the extensometer was recalibrated (as necessary), and accuracy was verified in accordance with requirements of ASTM E83-10. The extensometer accuracy meets requirements for Class B-2 (the greater value of either $\pm 0.5\%$ of any reading, or 200 $\mu\epsilon$) as prescribed within ASTM E8/E8M-13. The test system and environmental-control furnace used for elevated-temperature testing precluded use of specimen-mounted extensometry for strain measurement. In lieu of direct strain measurement, test-system compliance was measured at room temperature, and a quadratic strain-estimating function was developed. Inputs include the quadratic coefficients, the instantaneous applied force, and the effective gauge length of the specimen. The estimated-strain and actual-stress data for each specimen were used to estimate the yield strength and uniform elongation for each test. Equation 1 and Equation 2 make the correlation used to determine approximate specimen strain from system crosshead displacement. $$XhdCorr = 1.87111 * 10^{-8} * N^2 + 1.10009 * 10^{-4} * N$$ (1) $$SS = \frac{Xhd - XhdCorr}{Gleff} \tag{2}$$ where SS = approximate specimen strain (%) Xhd = cross-head displacement (mm) XhdCorr = correction for cross-head displacement (mm) N = force(N) GLeff = effective gauge length (mm/%). The method used to estimate specimen strain from grip displacement for the elevated-temperature tests works well and provides consistent results from the suite of valid elevated-temperature tests that were completed. ## 2.6 Test Controls and Data Collection ASTM E8/8M-13 or ASTM E21-10 guided room-temperature and elevated-temperature testing, respectively. Room-temperature tests occurred in an air environment. Elevated-temperature tests were performed at temperatures varying between 200 and 550°C in an argon-gas environment. Room-temperature and elevated-temperature tests were run at a constant crosshead speed of 0.2 mm/min, producing a nominal specimen strain rate of 0.5%/min. This rate meets the requirements of both ASTM E8-13 (for room temperature⁶ and E21-10 (for elevated-temperature⁷) tensile-testing standards. Elevated-temperature tests were conducted with the test temperature within \pm 5°C of the target temperature as measured using the calibrated thermocouples attached to the specimen ends of the grip jaws. At the higher temperatures tested, some strain-rate effect may be present in the measured stress (see discussion section for further information). Tests were controlled and data collected by Instron Bluehill version 3.41 software. Test-method files for control and data acquisition were verified with dummy specimen tests prior to use in running actual tests on the DU–10Mo specimens. ## 2.7 Source of Material and Foil Preparation Simulated fuel foils were fabricated using depleted uranium (DU) and molybdenum to simulate actual fuel foils made with low-enriched uranium. Flat, rectangular tensile specimens correspond to a reduced sub-size specimen, as described in Figure 1 of ASTM E8/8M-13,6 with an additional size reduction of 50%, as shown in Figure 1. The specimens were cut from the foil sheet using wire EDM. Specimens were sectioned from the sheet with the tensile axis both parallel and transverse to the foil-rolling direction. The resultant specimens have a nominal overall length of 50.8 mm, a reduced section width of 3.2 mm, and a reduced section length of 16 mm. The small specimen size is necessary due to size limitations imposed by the furnace's internal dimensions and material availability. Figure 1. Half-sub-size flat tensile specimen fabrication specification. The source of DU–10Mo alloy material was coupon #551, provided by the Y–12 National Security Complex at Oak Ridge National Laboratory. This coupon was chosen as it was cast as part of a rolling study being conducted by the Fuel Fabrication Capability (FFC) pillar; thus, it would have similar alloy characteristics to the coupons used by FFC for the rolling studies being conducted. Once received at INL, the coupon (plate) was quartered using wire EDM, as shown in Figure 2, and homogenized at 1000°C for two hours, while under vacuum at 5×10^{-6} Torr. Chemistry analysis was performed at Y-12 on a billet sister to the billet from which this coupon was cut and is reported for samples taken near the top, middle, and bottom of the log. The Mo content is 10.4, 10.5, and 10.3% respectively. Carbon impurities are 706, 714, 722 ppm, respectively. Other impurities over 25 ppm are shown in Table A-1. Impurity values less than 25 ppm where provided in the chemistry report from Y-12, but are not reported here. The resulting four pieces were rolled into simulated fuel foils (Figure 3) using general procedures, except with varying thermo-mechanical processing histories. Several material conditions of potential interest to fabricators, fuel designers, and reactor operators were created by various alterations to the rolling and heat-treating schedules. The results reported here include (1) hot-rolling, followed by 50% cold-rolling (551-2), (2) hot-rolling, followed by 50% cold-rolling and subsequent stress-relief annealing at 650°C for one hour (551-3), (3) hot-rolling, followed by 20% cold-rolling (551-4), and hot-rolling only (551-5). Figure 2. Machined coupon from Y–12 quartered into sections for rolling. Figure also shows scrap containing a visible casting defect that was cut off during sectioning. Figure 3. Foil 551-4-1 after hot rolling and cold rolling has been completed. ## 2.8 Test Specimens and Specimen Dimensional Measurements Each of the four foils were further subdivided into smaller sections for handling purposes, and small tensile specimens for these tests were cut from the foil sheets using wire EDM (Figure 4, Figure 5, and Figure 6). Flat, rectangular tensile specimens were fabricated, corresponding to a reduced sub-size specimen, as described in Figure 1 in ASTM E8/8M-13,6 with an additional size reduction of 50%, as shown in the INL Drawing. 8 The resultant sheet-type test specimens (flat "dog bone" specimens) had nominal dimensions of overall length, 50.8 mm; reduced section width, 3.2 mm; and, reduced section length, 16 mm. The small specimen size is necessary due to size limitations imposed by the furnace internal dimensions and limited material availability. Specimens were cut with the tensile axis, both parallel and transverse to the rolling direction, to assess potential effects of rolling texture on mechanical properties. Each specimen was labeled, maintaining foil ID, orientation, and location in the foil sheet from which it was removed. The specimens had gauge-mark indents placed on each specimen's lateral centerline, equidistant from the reduced section-length center, with a nominal spacing of 12.70 mm. The marks were made with a carbide indentor that has a small radius tip and conical profile and an alignment and locating fixture. The resultant indents had a surface diameter of less than 0.08 mm and were uniformly circular. Figure 7, Figure 8, and Figure 9 show the marking alignment fixture and a trial specimen with marks applied. Figure 4. EDM pattern showing the cutting diagram for Foil 551-2-2. Figure 5. Foil 551-2-2 showing subsection labeling corresponding to the EDM cutting pattern. Figure 6. Individually labeled tensile specimens as cut per EDM pattern for Foil 551-2-2. Figure 7. Gauge-marking specimen-support base. Figure 8. Marking indenter guide plate installed over specimen on support base plate. Punch is placed in one of the guide holes. Finger pressure produces a satisfactory gauge-mark indent. Figure 9. Stainless steel trial specimen showing gauge-mark indentations produced using the marking fixture. The reduced section width is approximately 3.0 mm. The marks shown appear larger than they actually are due to high contrast and lighting angle. All specimens were sent to the INL MFC metrology laboratory, where width, thickness, overall length, and gauge-mark spacing were measured and recorded to the nearest 0.001 mm. Overall length for each specimen was measured to the nearest 0.01 mm. All measurements were made with calibrated instruments. Each width and thickness measurement was made twice, and each gauge-mark-spacing measurement was made three times to improve the confidence of the measured dimensions. Locating gauge-mark indentation centers was repeatable to better than 0.005 mm using an optical comparator. The average pre-test dimensions for a sample of specimens from foil 551–2 are provided in Table 4. All dimensional inspections both pre-test and post-test are included in the appendix. Table 4. Representative average specimen pre-test dimensions from Foil 551–2. | Specimen ID | Thickness (mm) | Width (mm) | Gauge Mark
Spacing (mm) | Overall Length (mm) | |-------------|----------------|------------|----------------------------|---------------------| | L-15 | 0.384 | 2.969 | 12.664 | 50.70 | | L-16 | 0.375 | 2.997 | 12.703 | 50.70 | | L-17 | 0.371 | 3.117 | 12.729 | 50.70 | | L-18 | 0.384 | 2.973 | 12.823 | 50.70 | | L-19 | 0.379 | 2.999 | 12.720 | 50.71 | | L-20 | 0.371 | 3.113 | 12.723 | 50.71 | All specimen dimensions were measured multiple times to ensure accuracy of measurement. Some variability in these replicate specimen dimensional inspections was noted. A brief analysis was conducted to evaluate potential errors that could transfer to the test results, as follows. Measurements from 20 randomly
selected test specimens were examined. The variance of each group of replicate measurements was determined. The accumulated variances for each type of measurement were averaged, and the square root, calculated. The result is the sample standard deviation. The standard deviation of measured values from each particular measurement group is provided in Table 5. The standard deviation for post-test thickness, width, and area are not calculated because reporting of reduction of area is not required. Table 5. Dimensional measurement standard deviations from random sampling of 20 specimens. | | Gauge Length | Thickness | Width | Area (mm²) | |--------------------|--------------|-----------|-------|--------------| | Standard Deviation | (µm) | (µm) | (µm) | (calculated) | | Pre-Test Std.Dev. | 3.71 | 0 | 1.13 | 1.95E-6 | | Post-Test Std.Dev. | 3.66 | | | | The potential error in the gauge-length measurements leads to an error band for the calculated values of elongation, determined using the pre- and post-test gauge length measurement. The result, $2*std.dev = \sim 15 \mu m$, is $\pm 0.12\%$ of elongation at the nominal initial gauge length of 12.7 mm. ### 3. RESULTS Results from all of the valid tests from both longitudinal and transverse tensile specimens are presented for both room-temperature and elevated-temperature tests (see Table 6 and Table 7). Representative stress versus strain plots for a room-temperature and a 250°C test are provided in Figure 10. Construction lines for determining 0.2% offset yield strength are also shown. Figure 10. Stress-strain plots for room-temperature and 250°C tensile tests on longitudinal specimens of DU–10Mo foil 551-2 that was prepared by hot-rolling, followed by 50% cold-rolling reduction in thickness. Slope of offset modulus lines (dashed) represents the modulus reduction expected between room temperature and 250°C. The mechanical properties determined by analysis of the test data, in accordance with ASTM E8/8M-13a (room-temperature) and ASTM E21-10 (elevated-temperature), are shown in Table 6 and Table 7 respectively. ## 3.1 Summary of Required Reporting Elements All tests were conducted on DU-10Mo material using half-sub-size sheet-type tensile specimens. Room-temperature tests were conducted in accordance with ASTM E8/8M-13a while elevated-temperatures tests were conducted using ASTM E21-10. In both cases, the 0.2% offset method was used to determine yield strength. Elongation was determined after fracture occurred. A constant crosshead speed of 0.2 mm/min was used producing a nominal specimen strain rate of 0.5%/min. Calculated values were rounded up or down to the nearest digit of the required accuracy (standard rounding method), excepting that, in accordance with the test standard, final specimen elongation values were rounded to the nearest 0.2% deformation interval. All elevated-temperature tests were conducted under argon atmosphere with <20ppm O₂ concentration. In multiple cases, test results for an individual specimen were invalidated by specimen failure outside of the allowable region or, infrequently, due to other problems with a particular specimen. Replicate specimens under replicate test conditions were tested to obtain the required number of valid tests for that particular material/test condition combination. Tests that did not fail in the middle 50% of gauge length were considered invalid and not included in results; initial fractography of a few samples of specimens indicate the failure method is ductile rupture. Some specimens failed prior to the stress-strain curve intersecting the 0.2% offset curve; these specimens do not provide a valid yield-strength value and are reported with "NA" for yield strength in the tables. Testing equipment included the following: Instron 3366 5kN load cell, 12.7 mm gage length extensometer from Epsilon Corp. The extensometer has a measuring range to +20% tensile strain, meeting class B-2 requirements; CM Inc. rapid temp furnace, model 1608 (gas-sealed front loader), SN100400, Eurotherm 2404 temperature controller, thermocouple material, sheathed type-K thermocouple (calibrated) in furnace environment for temperature control, Type K thermocouples (calibrated) welded to the specimen-grip jaw ends for temperature monitoring. All additional information required for reporting in accordance with the testing standards is provided in Table 6 and Table 7 respectively. Table 6. Measured mechanical properties of DU-10Mo at room temperature. Tested and reported in accordance with ASTM E8/8M-13. Material: DU-10%Mo from plate #551. | Foil ID | Specimen ID | Foil Condition | Yield Strength (MPa) | Ultimate Tensile
Strength (MPa) | Initial Gauge Mark
Spacing (mm) | Elongation
(% increase) | Uniform Elongation (%) | Note | |---------|-------------|----------------|----------------------|------------------------------------|------------------------------------|----------------------------|------------------------|------------| | 551-2-2 | L15 | 50% CW | 1100 | 1170 | 12.664 | 1.2 | 2.36 | e. | | 551-2-2 | L16 | 50% CW | 1115 | 1179 | 12.703 | 3.6 | 2.55 | e. | | 551-2-2 | L17 | 50% CW | NA | 1168 | 12.729 | 4.0 | NA | a., b., c. | | 551-2-2 | T2 | 50% CW | 1098 | 1199 | 12.675 | 2.0 | 1.97 | d. | | 551-2-2 | Т3 | 50% CW | 1070 | 1070 | 12.685 | 0.2 | 1.42 | d. | | 551-2-2 | T14 | 50% CW | NA | 1064 | 12.720 | 1.6 | 1.31 | b., d. | | 551-3 | L1 | 50% CW + A | 1013 | 1016 | 12.738 | 8.6 | 1.27 | c. | | 551-3 | L2 | 50% CW + A | 1010 | 1012 | 12.709 | 9.0 | 1.27 | c. | | 551-3 | L3 | 50% CW + A | 1013 | 1016 | 12.692 | 9.0 | 1.26 | c. | | 551-3 | T1 | 50% CW + A | 1030 | 1031 | 12.678 | 7.4 | 1.33 | c. | | 551-3 | T2 | 50% CW + A | 1030 | 1032 | 12.686 | 7.6 | 1.24 | c. | | 551-3 | Т3 | 50% CW + A | 1028 | 1028 | 12.784 | 7.0 | 1.35 | c. | | 551-4 | L1 | 20% CW | 1091 | 1139 | 12.763 | 6.2 | 2.30 | d. | | 551-4 | L2 | 20% CW | 1099 | 1148 | 12.759 | 5.8 | 2.27 | d. | | Foil ID | Specimen ID | Foil Condition | Yield Strength (MPa) | Ultimate Tensile
Strength (MPa) | Initial Gauge Mark
Spacing (mm) | Elongation
(% increase) | Uniform Elongation (%) | Note | |---------|-------------|----------------|----------------------|------------------------------------|------------------------------------|----------------------------|------------------------|--------| | 551-4 | L3 | 20% CW | 1126 | 1167 | 12.758 | 5.6 | 2.24 | d. | | 551-4 | T1 | 20% CW | 1058 | 1192 | 12.756 | 2.2 | 2.32 | d. | | 551-4 | T2 | 20% CW | 1059 | 1109 | 12.769 | 1.6 | 1.57 | d. | | 551-4 | Т3 | 20% CW | 1072 | 1116 | 12.756 | 1.0 | 1.54 | d. | | 551-5 | L1 | HR Only | 1005 | 1006 | 12.730 | 10.6 | 1.29 | c. | | 551-5 | L2 | HR Only | 1017 | 1017 | 12.715 | 12.4 | 1.38 | c. | | 551-5 | L3 | HR Only | 1020 | 1020 | 12.696 | 12.2 | 1.32 | c. | | 551-5 | T1 | HR Only | NA | 1031 | 12.745 | 1.0 | 0.66 | b., c. | | 551-5 | T2 | HR Only | NA | 1011 | 12.725 | 1.2 | 1.08 | b., c. | | 551-5 | Т3 | HR Only | 1025 | 1026 | 12.686 | 1.4 | 1.41 | c. | | 551-5 | T13 | HR Only | 1061 | 1063 | 12.740 | 8.0 | 1.61 | d. | a. Specimen slipped in wedge grip jaw during early part of test, including through the zone of yielding. In-plane bending of gauge section is suspected to have occurred. Test was suspended, grip re-tightened, and test re-started. Subsequent strain data had to be spliced with initial test data. Due to slip and bending, it was not possible to accurately connect the two data sets, and an accurate 0.2% offset yield strength could not be established. Table 7. Measured mechanical properties of DU-10Mo at elevated temperature. | Foil ID | Specimen ID | Foil Condition | Temperature (C) | Yield Strength (MPa)* | Ultimate Tensile Strength
(MPa) | Initial Gauge Mark Spacing
(mm) | Elongation
(% increase) | Time to Attain Temp (min) | Time at Temp before
Testing (min) | | |---------|-------------|----------------|-----------------|-----------------------|------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------|--------| | 551-2-2 | L18 | 50% CW | 250 | 837 | 952 | 12.823 | 3.0 | 160 | 30 | e. | | 551-2-2 | L20 | 50% CW | 250 | 880 | 962 | 12.723 | 3.6 | 150 | 5 | c. | | 551-2-2 | L22 | 50% CW | 250 | 887 | 909 | 12.721 | 1.6 | 120 | 10 | c. | | 551-2-2 | T11 | 50% CW | 250 | NA | 820 | 12.700 | 1.8 | 275 | 10 | b., c. | | 551-2-2 | T12 | 50% CW | 250 | 864 | 872 | 12.785 | 1.2 | 160 | 5 | c. | | 551-2-2 | T13 | 50% CW | 250 | 856 | 888 | 12.727 | 1.8 | 120 | 5 | c. | | 551-2-2 | L2 | 50% CW | 350 | 821 | 884 | 12.706 | 4.5 | 100 | 5 | c. | | 551-2-2 | L3 | 50% CW | 350 | 765 | 876 | 12.765 | 3.8 | 90 | 5 | d. | 14 b. Specimens reached ultimate failure prior to intersection with the 0.2% offset curve; thus, no yield strength could be established. c. Test operator: Jason Schulthess d. Test operator: Michael Heighs e. Test operator: Randy Lloyd | Foil ID | Specimen ID | Foil Condition | Temperature (C) | Yield Strength (MPa) ^a | Ultimate Tensile Strength
(MPa) | Initial Gauge Mark Spacing
(mm) | Elongation
(% increase) | Time to Attain Temp (min) | Time at Temp before
Testing (min) | Other Special Conditions
(Temp Overshoots, notes,
etc.) | |---------|-------------|----------------|-----------------|-----------------------------------|------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------|---| | 551-2-2 | T5 | 50% CW | 350 | NA | 672 | 12.746 | 1.0 | 90 | 10 | b., c. | | 551-2-2 | T7 | 50% CW | 350 | 513 | 513 | 12.727 | 0.2 | 90 | 30 | d. | | 551-2-2 | L4 | 50% CW | 450 | 539 | 612 | 12.691 | 9.6 | 90 | 10 | c. | | 551-2-2 | L6 | 50% CW | 450 | 501 | 599 | 12.766 | 8.4 | 90 | 5 | c. | | 551-2-2 | L8 | 50% CW | 550 | 141 | 175 | 12.735 | 73.8 | 120 | 10 | c. |
 551-2-2 | L9 | 50% CW | 550 | 136 | 169 | 12.741 | 81.8 | 90 | 5 | c. | | 551-2-2 | L10 | 50% CW | 550 | 136 | 162 | 12.756 | 64.2 | 120 | 10 | c. | | 551-2-2 | Т8 | 50% CW | 550 | 81 | 108 | 12.686 | 51.0 | 120 | 40 | d., f. | | 551-2-2 | T9 | 50% CW | 550 | 108 | 164 | 12.788 | 36.4 | 160 | 10 | d. | | 551-2-2 | T10 | 50% CW | 550 | 109 | 159 | 12.796 | 39.2 | 100 | 5 | c. | | 551-3 | L4 | 50% CW + A | 200 | 673 | 712 | 12.756 | 13.4 | 180 | 5 | c. | | 551-3 | L5 | 50% CW + A | 200 | 653 | 708 | 12.694 | 13.0 | 120 | 5 | c. | | 551-3 | L6 | 50% CW + A | 200 | 661 | 710 | 12.674 | 14.2 | 120 | 5 | d. | | 551-3 | T4 | 50% CW + A | 200 | 677 | 722 | 12.714 | 12.0 | 105 | 5 | c. | | 551-3 | T5 | 50% CW + A | 200 | 681 | 728 | 12.744 | 16.0 | 120 | 5 | c. | | 551-3 | Т6 | 50% CW + A | 200 | 676 | 724 | 12.693 | 12.2 | 110 | 5 | c. | | 551-3 | L7 | 50% CW + A | 400 | 491 | 569 | 12.736 | 3.6 | 90 | 5 | d. | | 551-3 | L13 | 50% CW + A | 400 | 483 | 559 | 12.715 | 5.8 | 80 | 5 | d. | | 551-3 | L29 | 50% CW + A | 400 | 489 | 561 | 12.713 | 5.4 | 100 | 5 | d. | | 551-3 | Т8 | 50% CW + A | 400 | 493 | 576 | 12.640 | 5.2 | 90 | 10 | c. | | 551-3 | Т9 | 50% CW + A | 400 | 493 | 569 | 12.628 | 6.2 | 90 | 10 | c. | | 551-3 | T13 | 50% CW + A | 400 | 505 | 578 | 12.720 | 6.2 | 100 | 5 | c. | | 551-3 | L10 | 50% CW + A | 550 | 161 | 200 | 12.730 | 68.6 | 80 | 5 | c. | | 551-3 | L11 | 50% CW + A | 550 | 162 | 197 | 12.774 | 61.4 | 90 | 5 | d. | | 551-3 | L12 | 50% CW + A | 550 | 174 | 202 | 12.689 | 77.2 | 120 | 5 | c. | | 551-3 | T10 | 50% CW + A | 550 | 161 | 192 | 12.856 | 68.0 | 100 | 5 | d. | | 551-3 | T11 | 50% CW + A | 550 | 165 | 204 | 12.732 | 62.4 | 100 | 5 | d. | | 551-3 | T12 | 50% CW + A | 550 | 161 | 195 | 12.729 | 66.6 | 80 | 5 | d. | | 551-4 | L4 | 20% CW | 200 | 867 | 911 | 12.776 | 3.0 | 225 | 5 | c., f. | | 551-4 | L5 | 20% CW | 200 | 875 | 917 | 12.851 | 2.8 | 210 | 10 | d. | | 551-4 | L6 | 20% CW | 200 | 866 | 913 | 12.729 | 3.0 | 185 | 10 | d. | | Foil ID | Specimen ID | Foil Condition | Temperature (C) | Yield Strength (MPa) ^a | Ultimate Tensile Strength
(MPa) | Initial Gauge Mark Spacing
(mm) | Elongation
(% increase) | Time to Attain Temp (min) | Time at Temp before
Testing (min) | Other Special Conditions
(Temp Overshoots, notes,
etc.) | |---------|-------------|----------------|-----------------|-----------------------------------|------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------|---| | 551-4 | T4 | 20% CW | 200 | 780 | 954 | 12.721 | 4.0 | 120 | 5 | c. | | 551-4 | T5 | 20% CW | 200 | 800 | 953 | 12.778 | 3.6 | 140 | 10 | c. | | 551-4 | T7 | 20% CW | 200 | 816 | 895 | 12.748 | 1.6 | 135 | 15 | c. | | 551-4 | L7 | 20% CW | 400 | 611 | 719 | 12.697 | 2.8 | 80 | 5 | c. | | 551-4 | L8 | 20% CW | 400 | 621 | 711 | 12.744 | 2.4 | 80 | 10 | c. | | 551-4 | L10 | 20% CW | 550 | 146 | 185 | 12.717 | 50.6 | 220 | 5 | d. | | 551-4 | L11 | 20% CW | 550 | 150 | 193 | 12.731 | 43.8 | 150 | 5 | d. | | 551-4 | L13 | 20% CW | 550 | 160 | 200 | 12.797 | 43.4 | 130 | 10 | c. | | 551-4 | T10 | 20% CW | 550 | 156 | 198 | 12.779 | 25.4 | 90 | 5 | d. | | 551-4 | T11 | 20% CW | 550 | 148 | 180 | 12.719 | 43.0 | 150 | 5 | c. | | 551-4 | T12 | 20% CW | 550 | 156 | 198 | 12.713 | 32.8 | 110 | 5 | c. | | | ı | | Γ | | | | 1 | ı | 1 | , | | 551-5 | L4 | HR Only | 200 | 660 | 732 | 12.849 | 13.0 | 220 | 20 | d. | | 551-5 | L5 | HR Only | 200 | 665 | 701 | 12.690 | 4.8 | 140 | 5 | d. | | 551-5 | L6 | HR Only | 200 | 664 | 719 | 12.769 | 6.4 | 125 | 10 | c. | | 551-5 | T4 | HR Only | 200 | 695 | 710 | 12.691 | 2.0 | 120 | 5 | d. | | 551-5 | T5 | HR Only | 200 | 701 | 733 | 12.744 | 2.9 | 120 | 10 | c. | | 551-5 | T6 | HR Only | 200 | 691 | 725 | 12.747 | 4.8 | 120 | 10 | c. | | 551-5 | L7 | HR Only | 400 | 492 | 606 | 12.728 | 8.6 | 80 | 5 | d. | | 551-5 | L8 | HR Only | 400 | 494 | 608 | 12.675 | 8.6 | 100 | 5 | c. | | 551-5 | L9 | HR Only | 400 | 496 | 616 | 12.764 | 10.6 | 80 | 5 | d. | | 551-5 | L10 | HR Only | 550 | 231 | 267 | 12.786 | 35.2 | 100 | 5 | c. | | 551-5 | L11 | HR Only | 550 | 226 | 271 | 12.637 | 44.4 | 80 | 5 | c. | | 551-5 | L12 | HR Only | 550 | 229 | 270 | 12.734 | 39.6 | 70 | 5 | c. | | 551-5 | T10 | HR Only | 550 | 191 | 267 | 12.738 | 46.0 | 70 | 5 | c. | | 551-5 | T11 | HR Only | 550 | 208 | 276 | 12.755 | 45.2 | 60 | 5 | c. | | 551-5 | T12 | HR Only | 550 | 198 | 279 | 12.679 | 47.4 | 60 | 5 | c. | Yield strengths are approximate because no extensometer was used to measure strain directly; strain values were calculated from crosshead displacement based on test-system-compliance correction and effective specimen-gauge length. Specimens reached ultimate failure prior to intersection with the 0.2% offset curve; thus, no yield strength could be established. Test operator: Jason Schulthess Test operator: Michael Heighs Test operator: Randy Lloyd Temperature overshot by approximately 10°C Definitions of reported properties are provided in ASTM E8/8M-13. Given the small size of the test specimens, which tend to increase specimen-to-specimen variation in measured properties, the results are reasonably consistent. Tensile properties of DU–10Mo at room temperature through approximately 400°C, determined from the tests conducted herein, suggest the material is stronger and has lower ductility than have been reported previously in the literature. The explanation for these differences has yet to be determined, but is likely related to differences in grain size and/or impurity content. At the highest temperatures tested (550°C) better agreement between the values reported here and available literature was found. As expected, yield and UTS decreased with increasing test temperature. Generally, the yield stress for all foil processing conditions was found to be in the range of 1100 MPa for room-temperature tests and in the range of 200 MPa for tests conducted at 550°C. UTS was in the range of 1175 MPa at room temperature, decreasing to approximately 225 MPa at 550°C. Elongation increased significantly from 1–2% at room temperature, to 50% or more for the tests at 550°C. Additional details on the observed effects of foil processing condition and specimen orientation on tensile properties are summarized below. ## 3.1.1 Yield Strength No significant effect of fabrication history on yield stress was observed at the lowest (room temperature) and highest temperatures (550°C) tested. However, tests indicated yield strength differences exist at the intermediate temperatures tested with the 50% cold-worked and annealed and the hot-rolled-only material producing lower yield stress at the intermediate test temperatures. Significant effects of specimen orientation on yield strength were only observed in a few cases (specifically 20% cold worked material tested at 200°C resulted in lower yield stress in the transvers orientation, and hot-rolled-only material tested at room temperature and 200°C where the transvers orientation resulted in slightly higher-yield stress). ## 3.1.2 Ultimate Tensile Strength Significant differences in the UTS were noted in the longitudinal direction for the four foils at room temperature, with the difference continuing, but converging as the temperature increased. This difference between each of the four foils was also found to exist in the transvers direction. The 50% cold-worked and annealed and the hot-rolled-only material produced lower ultimate tensile stress at both room temperature and the intermediate test temperatures, but these stresses converged when specimens were tested at 550°C. Orientation effects for specimens from the same foil were only noted in the following case: 50% coldworked at 350°C, in which the transvers direction produced lower ultimate tensile stress. All other tests indicated no significant anisotropy due to rolling direction. ## 3.1.3 Slope Slope of the initial section of the stress-strain curve was calculated for each specimen and then averaged across all specimens tested in each temperature group. The average slope in MPa/% and standard deviation for each test temperature are 20°C, 884.21±13.15; 200–250°C, 417.63±16.81; 350°C, 422.25±14.75; 400–450°C, 320.43±17.88; and 550°C, 199.29±24.41. Room-temperature elastic-modulus values reported in the literature are in the low-to-mid 80s GPa range^{9,10}—consistent with our room-temperature test results. ## 3.1.4 Ductility Room-temperature ductility was determined for all of the foil conditions tested. Of note, the 50% cold worked and annealed foil (foil 551-3) showed increased ductility compared to the 50 and 20% coldworked foils. The hot-rolled-only foil showed more ductility in the longitudinal direction than any other foil at room temperature, but showed very little ductility in the transverse direction, indicating significant anisotropy at room temperature. Ductility increased continuously for all foil conditions as testing temperature increased and was significant for foils tested at 550° C. At 550° C, the ductility for all foil conditions and orientations increased from \sim <10% to as much as \sim 70% in the 50% cold-worked foil in the longitudinal direction (551-2) and also \sim 70% for the 50% cold-worked and annealed foil (551-3) in both directions. The increase in ductility at 550°C was more pronounced for the 20% cold-worked foil than for other foil processing conditions. For a few specimens in both room-temperature and elevated-temperature cases, the 0.2% offset curve did not intersect the stress strain curve. Theoretically, ductility would be very small in these cases. When combined with the measurement error evaluated in Table 5, and recognizing that it can be difficult to accurately piece specimens back together for post-test elongation measurements due to roughness at the fracture surface;
it is likely that actual elongation values are less than the reported values of 3% or less. This specifically includes the following specimens tested at room temperature: 551-2-2 L17 and T14, 551-5 T1 and T2, and the following specimens tested at elevated temperature: 551-2-2 T11 and T5. Further, this may impact any specimens with reported elongation values of less than 3%. #### 3.1.5 Recommendations for Future Work It is recommended that future work include fractography of selected specimens to determine whether failure mechanisms other than ductile rupture exist and whether fracture initiation sites can be identified. Metallography and microstructural characterization should be completed to characterize grain sizes and other microstructural features that may explain the observed mechanical behavior. Finally, it is recommended that additional testing be conducted on similarly processed material, having different impurity content (particularly different carbide distributions), to better understand the range of properties that may be expected in commercially fabricated fuel foils. The room-temperature properties appear different from the expected ranges based upon historical data according to [1], [2], and [3], but it is noted that both source-material chemistry and thermo-mechanical processing history of the test specimens can result in significant microstructural differences that may explain these results. ¹¹ Further, characterization work is needed to better understand the differences in reported properties. #### 4. DISCUSSION Test-system compliance (including test-frame components, pull rods (long), and high-temperature wedge grips) was assessed prior to commencing this series of tests. Machine crosshead displacement was converted to effective grip displacement using a quadratic compliance-correction function for the elevated-temperature tests. This assessment is discussed in TEV-1921 [12]. The compliance-corrected grip displacement was used to estimate reduced section strain in the specimen. Slope of the initial section of the stress-strain curve was calculated for each specimen and then averaged across all specimens tested in each temperature group. Thus, the average slope in MPa/% and standard deviation by test temperature group are: 20°C, 884.21±13.15; 200–250°C, 417.63±16.81; 350°C, 422.25±14.75; 400–450°C, 320.43±17.88; and 550°C, 199.29±24.41. Since tension testing per ASTM E111-04 was not conducted, and the tests do not meet the requirements of ASTM E111-04¹³; the slope values reported here are only instructive to provide a comparison to reported elastic modulus values. Historically, room-temperature elastic-modulus values were reported to be in the low-to-mid 80s GPa range^{10,14}—consistent with our room-temperature test results for slope of the initial section of the stress-strain curve. Additional modulus data for various temperatures were found in [1] and are summarized in Table 1. Since some non-linearity was noted in the very early stages of the stress-strain curves (particularly at higher temperatures), it is recommended, if a more accurate measurement is desired, that moduli be evaluated using ASTM E494-10.15 ## 4.1 Calculated Strength Uncertainties The overall uncertainty in specimen-strength calculations is a function of accuracy of specimen pretest dimensional measurement (inconsequential in these tests) and measured force errors (described above). Additionally, linearity of strain transducer response and, to a lesser degree, the absolute accuracy of the measured strain values influences the yield-strength determinations. Standard deviation for yield stress and UTS for each group of specimens was calculated. The standard deviation of calculated strength values for replicate specimen groups are reported in Table 8. Standard deviations are typically 8–14 MPa, with a low value of zero (perfect specimen-to-specimen agreement); two UTS groups were approximately 65–80 MPa. In essence, replicate specimen-to-specimen variability seemed to be larger than combined errors introduced by force-measurement inaccuracies. The test results show good specimen-to-specimen consistency, with the exception of transverse tests of foil 551–5 at room temperature. In this case, the results of one specimen were further than one standard deviation below the other tests. One additional test was performed for this condition, which agreed with the primary cluster of results and implies that the one test with low-strength results may have had an uncharacteristic failure mechanism causing premature failure. Tests were conducted using a constant crosshead displacement rate of 0.2 mm/min, resulting in a strain rate of approximately 0.5%/min. At the higher temperatures tested, some strain-rate effect may be present. The lack of linearity in the early portion of the test data for the high-temperature tests (550°C), suggests that the rate of stress relaxation and is close to the stress induction rate at the tested strain rate. A summary of the test results is presented in Table 8. Mechanical properties as a function of temperature within the range of room temperature to 550°C are shown graphically in Figure 11 through Figure 22. Figure 11 through Figure 22 indicate little to no fabrication effect on yield stress on the lowest temperature (room temperature) and highest temperature (550°C) tested. Figure 11 through Figure 14 do indicate divergence in the intermediate temperatures tested, based on fabrication effects. Effects of orientation (anisotropy due to rolling) only seem to appear in the following yield-stress cases (50% coldworked at 250°C and 350°C, 20% cold-worked at 200°C, and hot-rolled-only at room temperature and 200°C) (see Figure 15 through Figure 22). However, these orientation effects are not large in magnitude. Similar orientation effects are noted in the UTS results as shown in Figure 15 through Figure 22. Reviewing the data in Table 8, we note that post cold rolling annealing heat treatment on Foil 551-3 produces results (yield stress, ultimate tensile stress) very similar to the hot-rolled-only foil (551-5), suggesting this post-cold-rolling thermal treatment is effective at substantially recovering tensile properties comparable to hot-rolled-only material. Table 8. Summary of mechanical properties from the current work. | able 8. Summary 011 | | | | | | <u> </u> | | _ | |---------------------|-------------|----------------|--------------|-------------------|----------------|--------------------|--------------------|-----------------------------| | Group Identifier | Orientation | Nominal T (°C) | Avg YS (MPa) | Std.Dev. YS (MPa) | Avg. UTS (MPa) | Std.Dev. UTS (MPa) | Avg Elongation (%) | Std. dev. Elongation
(%) | | 551-2-2-L-20 | L | 20 | 1108 | 8 | 1172 | 5 | 2.9 | 1.2% | | 551-2-2-T-20 | T | 20 | 1084 | 14 | 1111 | 62 | 1.2 | 0.8% | | 551-3-L-20 | L | 20 | 1012 | 1 | 1015 | 1 | 8.9 | 0.2% | | 551-3-T-20 | T | 20 | 1029 | 1 | 1030 | 2 | 7.3 | 0.3% | | 551-4-L-20 | L | 20 | 1105 | 15 | 1151 | 12 | 5.9 | 0.2% | | 551-4-T-20 | T | 20 | 1063 | 6 | 1139 | 38 | 1.6 | 0.5% | | 551-5-L-20 | L | 20 | 1043 | 18 | 1014 | 6 | 11.7 | 0.8% | | 551-5-T-20 | T | 20 | 1025 | 0 | 1033 | 19 | 2.9 | 2.9% | | 551-3-L-200 | L | 200 | 662 | 8 | 710 | 2 | 13.5 | 0.5% | | 551-3-T-200 | T | 200 | 678 | 2 | 725 | 2 | 13.4 | 1.8% | | 551-4-L-200 | L | 200 | 869 | 4 | 914 | 2 | 2.9 | 0.1% | | 551-4-T-200 | T | 200 | 799 | 15 | 934 | 28 | 3.1 | 1.0% | | 551-5-L-200 | L | 200 | 663 | 2 | 717 | 13 | 8.1 | 3.6% | | 551-5-T-200 | T | 200 | 696 | 4 | 723 | 10 | 3.2 | 1.2% | | 551-2-2-L-250 | L | 250 | 868 | 22 | 941 | 23 | 2.7 | 0.8% | | 551-2-2-T-250 | T | 250 | 860 | 4 | 860 | 29 | 1.6 | 0.3% | | 551-2-2-L-350 | L | 350 | 793 | 28 | 880 | 4 | 4.1 | 0.3% | | 551-2-2-T-350 | T | 350 | NA | NA | 593 | 80 | 0.6 | 0.4% | | 551-3-L-400 | L | 400 | 487 | 4 | 564 | 5 | 4.9 | 1.0% | | 551-3-T-400 | T | 400 | 497 | 6 | 574 | 4 | 5.8 | 0.5% | | 551-4-L-400 | L | 400 | 616 | 5 | 715 | 4 | 2.6 | 0.2% | | 551-5-L-400 | L | 400 | 494 | 2 | 610 | 4 | 9.3 | 0.9% | | 551-2-2-L-450 | L | 450 | 520 | 19 | 606 | 7 | 9.0 | 0.6% | | 551-2-2-L-550 | L | 550 | 137 | 2 | 169 | 5 | 73.3 | 7.2% | | 551-2-2-T-550 | T | 550 | 99 | 13 | 144 | 25 | 42.2 | 6.3% | | 551-3-L-550 | L | 550 | 165 | 6 | 200 | 2 | 69.1 | 6.5% | | 551-3-T-550 | T | 550 | 162 | 2 | 197 | 5 | 65.6 | 2.4% | | 551-4-L-550 | L | 550 | 152 | 6 | 193 | 6 | 45.9 | 3.3% | | Group Identifier | Orientation | Nominal T (°C) | Avg YS (MPa) | Std.Dev. YS (MPa) | Avg. UTS (MPa) | Std.Dev. UTS (MPa) | Avg Elongation (%) | Std. dev. Elongation
(%) | |------------------|-------------|----------------|--------------|-------------------|----------------|--------------------|--------------------|-----------------------------| | 551-4-T-550 | Т | 550 | 153 | 4 | 192 | 8 | 33.7 | 7.2% | | 551-5-L-550 | L | 550 | 229 | 2 | 269 | 2 | 39.7 | 3.7% | | 551-5-T-550 | Т | 550 | 199 | 7 | 274 | 5 | 46.2 | 0.9% | Figure 11. Yield stress in the longitudinal direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures. Figure 12. Ultimate tensile stress in the longitudinal direction for each of the four foil-fabrication conditions. The figure shows the cluster of UTS at 550°C while there is a divergence in the fabrication conditions in the room-temperature and intermediate values. The annealed and hot-rolled-only foils indicate lower UTS values in the room and intermediate temperatures. Figure 13. Yield stress in the transverse direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The
annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures. Note that data are not available for foils 551-4 and 551-5 in the transverse direction at 400°C. Figure 14. Ultimate tensile stress in the transverse direction for each of the four foil-fabrication conditions. The figure shows the cluster of yield stress at room temperature and at 550°C while there is a divergence in the fabrication conditions in the intermediate values. The annealed and hot-rolled-only foils indicate lower yield-stress values in the intermediate temperatures (200°C), but this seems to reconverge at 400°C. Note that data are not available for foils 551-4 and 551-5 in the transverse direction at 400°C. Figure 15. Yield stress for foils cold-rolled to 50% reduction. Note no significant difference in yield-stress values based on rolling direction. No data are available for yield stress in the transvers direction for 350 and 450°C. Figure 16. Ultimate tensile stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in UTS values based on rolling direction. Figure 17. Yield stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in yield-stress values based on rolling direction. Figure 18. Ultimate tensile stress for foils cold-rolled to 50% reduction and then annealed at 650°C for one hour. Note no significant difference in UTS values based on rolling direction. Figure 19. Yield stress for foils cold-rolled to 20% reduction. Note a minor difference in yield-stress values based on rolling direction for 200°C. No transverse data are available for 400°C. Figure 20. Ultimate tensile stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in UTS values based on temperature. No transverse data are available for 400°C. Figure 21. Yield stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in yield-stress values based temperature. No transverse data available for 400°C. Figure 22. Ultimate tensile stress for foils hot-rolled only with no cold-rolling reduction. Note no significant difference in UTS values based on temperature. No transverse data available for 400°C. #### 5. REFERENCES - 1. M. B. Waldron, R. C. Burnett, S. F. Pugh, *The Mechanical Properties of Uranium–Molybdenum Alloys*, UK Atomic Energy Authority Technical Report, ARE-MB-2554, 1958. - 2. Hakan Ozaltun, M-H., Herman Shen, and Pavel Medvedev, "Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing," *Journal of Nuclear Materials* 419.1 (2011), 76–84. - 3. D. Burkes at el., Metall. and Materials Trans. A 40A (2009), 1069-1079. - 4. Standard Practice for Verification and Classification of Extensometer Systems, ASTM E83-10, ASTM International Annual Book of Standards, v.3.01, 2013. - 5. Standard Practice for Verification and Classification of Extensometer Systems, ASTM E83-10, ASTM International Annual Book of Standards, v.3.01, 2013. - 6. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/8M-13a, ASTM International Annual Book of Standards, v.3.01, 2013. - 7. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM E21-09, ASTM International Annual Book of Standards, v.3.01, 2013. - 8. "Half-Subsize Flat Tensile Specimen Fabrication Specification (US Customary Dimensions)," INL Drawing 604240, 2013. - 9. J. E. Gates, et al., "Stress-Strain Properties of Irradiated Uranium–10 w/o Molybdenum," BMI-APDA-638, Battelle Memorial Institute, Columbus, OH, January, 1958. - 10. G. Beghi, *Gamma Phase Uranium-Molybdenum Fuel Alloys*, EUR-4053e, European Atomic Energy Community, 1968. - 11. D. Burkes at el., Metall. and Materials Trans. A 40A (2009), 1069-1079. - 12. TEV-1921, "Tensile Testing System Configuration and Validation for DU–10Mo Elevated Temperature Tensile Tests," Rev. 0, INL, 2013. - 13. Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus, ASTM E111-04, ASTM International Annual Book of Standards, v.3.01, 2013 - 14. J. E. Gates, et al., *Stress-Strain Properties of Irradiated Uranium–10 w/o Molybdenum*, BMI-APDA-638, Battelle Memorial Institute, Columbus, OH, January, 1958. - 15. Standard Practice for Measuring Ultrasonic Velocity in Materials, ASTM E494-10, ASTM International Annual Book of Standards, v.3.01, 2013 INTENTIONALLY BLANK # Appendix A Additional Figures INTENTIONALLY BLANK # Appendix A ## **Additional Figures** Figure A-1. Minimal area inside furnace to install grip alignment collar, install specimen in grips, ensure proper specimen alignment in grips, tighten grip jaws, remove alignment collar, and install extensometer (when used). Care must be used to prevent damage to specimens or fragile Super Kanthal heating elements. Figure A-2. Inert-gas and cooling-water plumbing at rear of furnace. Metal vacuum hose running down to pump is seen at lower right. Gas piping is all metal or ceramic to prevent oxygen infusion. Figure A-3. Specimen installed in grips inside of furnace chamber, with extensometer installed, ready to begin a room-temperature test. Wires from thermocouples welded to grip jaws are seen above and below extensometer. For size reference, the hex grip-tightening bolt-heads are 16 mm. Grip alignment collar has been removed. FigureA-4. Broken elevated-temperature test specimen as seen through magnifying viewport in furnace door. Lighting is through a narrow window in the door below the viewport. Break is visible at lower portion of reduced section. Table A-1. Chemistry report provided by Y-12 for log 3C32-WP-TRN0. Impurity levels over 25 ppm reported. Impurity values less than 25 ppm where provided in the chemistry report from Y-12 but are not reported here. | Porte and | | | | | | | | | | | | | |----------------------|-------|-------|-----------|-----------|-----------|-----------|-------|-----------|-----------|-------|-----------|----------| | 3C32-
WP-
TRNO | %Mo | ppm C | ppm
Al | ppm
Cu | ppm
Er | ppm
Fe | ppm K | ppm
Mn | Ppm
Ni | ppm P | ppm
Si | ppm
W | | Тор | 10.40 | 706 | 60 | 13 | 5.9 | 160 | 32 | 28 | 37 | <20 | 250 | 28 | | Middle | 10.50 | 714 | 60 | 13 | 28 | 160 | <16 | 29 | 39 | <20 | 250 | 25 | | Bottom | 10.30 | 722 | 61 | 12 | 3.0 | 160 | 21 | 29 | 38 | <20 | 240 | 25 | 36 Sheet 1 of _______ Date: 9-12-13 **Tensile Specimen Dimensional Record Sheet** Measurement Operator GL measurement instrument W measurement instrument Name: James Reseigh Signature: Janu Arroff Expiration Date: 4-11-14 ID: AG78 ID: A487 Expiration Date: 4/- //- /4/ T measurement instrument Temperature instrument ID: A 409 Expiration Date: 4/-//-/4/ Expiration Date: 8-12-/4/ 1. Locations to measure are indicated in the diagram. All dimensions in mm. Record measurements to 0.001 mm. 2. Conical indent marks for GL are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). 3. Measure W₁, W₂, and W_C two times. Reset reference zero for each measurement (two independent measurements). 4. Measure two thicknesses at each of two locations inside of gage mark indents as indicated. Measuring device contact surface should not cover the indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. 5. Record room temperature before starting and after completion of each group of measurements. Start of Measurements: 18,9 °C | ABEL HERE" T_1 T_2 ABEL HERE" W_1 W_2 W_3 W_4 W_4 | CONICAL I
(SMALL)
17.8 | Notes: | rements: 19.0 °C | | |---|------------------------------|--------|------------------|---| | 107 () | | * | T () | T | | 1 | W ₁ | (mm) | W ₂ (| (mm) | W _c (| mm) | | GL (mm) | | T ₁ (I | mm) | T ₂ (1 | mm) | |-------------|----------------|-------|------------------|-------|------------------|-------|--------|---------|--------|-------------------|-------|-------------------|-------| | Specimen ID | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L-15 | 2.997 | 2.998 | 2.975 | 2.975 | 2.969 | 2.970 | 12.665 | 12.663 | 12.663 | .384 | .385 | .382 | .382 | | L + 16 | 3.012 | 3.012 | 3.012 | 3.012 | 2.997 | 2.997 | 12.701 | 17.703 | 12.705 | 376 | . 375 | ,375 | .374 | | L-17 | 3.131 | 3.131 | 3.134 | 3.135 | 3.118 | 3.115 | 12.728 | 12.730 | 12.728 | .371 | ,370 | .371 | . 37) | | L-18 | 2.978 | 2.978 | 2.984 | 2.984 | 2.973 | 2.972 | 17.824 | 12.821 | 12.824 | . 384 | . 384 | .384 | .384 | | L-19 | 3.014 | 3.013 | 3.014 | 3.014 | 2.999 | 2.999 | 12.721 | 12.718 | 12.721 | 378 | .378 | ,379 | 380 | | L-20 | 3.129 | 3.127 | 3.133 | 3.131 | 3.114 | 3.112 | 12.724 | 12.725 | 12.721 | .371 | .371 | . 371 | .372 | | L-21 | 2.974 | 2.974 | 2.983 | 2.983 | 2.947 | 2.966 | 12.712 | 12.718 | 12.72/ | .381 | .382 | .381 | .381 | | L-22 | 3.008 | 3.007 | 3.06 | 3.015 | 2.992 | 2.995 | 12.721 | 12.722 | 12.720 | .382 | . 382 | .382 | .382 | | L-23 | 3.133 | 3.131 | 3.130 | 3.131 | 3.115 | 3.113 | 12.95/ | 12.945 | 12.947 | . 387 | . 387 | .387 | .388 | | L-24 | 3.124 | 3.123 | 3.131 | 3.131 | 3.104 | 3.10 | 12.713 | 12.720 | 12.723 | .388 | .389 | .389 | .389 | | Specimen | specimon OALo | Specimen OAL + | - LOAL | 1 DALO | |----------|---|----------------|--------|----------| | L-15 | not me asoned | 51.12/51.09 | .41 | | | 1 - 16 | 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 51,45/51.44 | .75 | | | 6-17 | 35 56 | 51,00/50,98 | .29 | | | 4-18 | 3 3(" | 51.11/51.10 | 0.41 | 0,0081 | | 4-59 | 50.71/50,70 | 50.84 /50.83 | 0.13 | 0,00 2 6 | | 4-20 | 50,70/50,71 | 51,07/51,06 | 0.36 | 0.00 >1 | | 6-21 | 50.72/50.72 | | | | | 6-22 |
50.71/50,71 | | | | | L-23 | 50,70/50,70 | | | | | 1-24 | 50.71/50.68 | | | | | 1-25 | 50.26/50.26 | | . / | | | 4-26 | 50.24/ 50.24 | | | | | | (no L-27) | | | | | L-28 | 50.23/50.23 | | | | Mezsurement by exlipers 730710, Exp: 04 sep 2014 DRIGWAL Date: 12 Sopt 2013 #### Tensile Specimen Dimensional Record Sheet (continuation) Sheet 2 of 2 Measurement Operator Name: James Reseigh Signature: see sheet 1 | | W ₁ | (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| (mm) | T ₂ (| mm) | |------------------|----------------|-------|----------------|-------|-------|-------|--------|---------|--------|------------------|-------|------------------|-------| | Specimen ID | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L-25 | 2.982 | 2.980 | 2.977 | 2.974 | 2.962 | 2.940 | 12.738 | 12.740 | 12.748 | , 373 | .374 | . 373 | . 373 | | L-26 | 3.008 | 3.008 | 3.014 | 3.013 | 2.998 | 2.996 | 12.499 | 12.684 | 12.678 | .381 | .381 | .381 | .381 | | | | | | | | | | | | -385 | .386 | -387- | -387 | | L-28 | 3.131 | 3.131 | 3.128 | 3.130 | 3.116 | 3.114 | 12.837 | 12.831 | 12.834 | .385 | .386 | .387 | .387 | | L-29- L-27 16050 | 3.121 | 3.118 | 3.132 | 3.131 | 3.105 | 3.102 | 12.723 | 12.722 | 12.725 | , 389 | . 389 | . 389 | ,390 | - | | | | | - | - | - | | | | | - | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | lotes: | | |--------|--| | | | Foil: 551-2-2 Pretest New Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W1, W2, and Wc two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ | (mm) | W ₂ (| mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|----------------|-------|------------------|-------|-------|-------|--------|---------|--------|------------------|------|------------------|------| | , ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | TI | 52.340 | 16.827 | 3.134 | 3.136 | 3.135 | 3.136 | 3.122 | 3.121 | 12.732 | 12.722 | 12.721 | .387 | .387 | .386 | .386 | | T2 | 52.383 | 4.871 | 3.140 | 3.140 | 3.141 | 3.141 | 3.124 | 3.124 | 12.475 | 12.667 | 12.485 | ,388 | .308 | .391 | .39/ | | T3 | 52.410 | 16.916 | 3.143 | 3.144 | 3.140 | 3.140 | 3.112 | 3.111 | 12.687 | 12.483 | 12.685 | .389 | .389 | .389 | .389 | | T4 | 52.442 | 16.925 | 3.151 | 3.152 | 3.144 | 3.144 | 3.117 | 3.117 | 12.674 | 12.675 | 12.480 | ,389 | .389 | .391 | .391 | | T5 | 52.474 | 17.010 | 3.217 | 3.218 | 3.184 | 3.184 | 3.179 | 3.179 | 12.756 | 12.740 | 12.741 | ,389 | ,389 | .389 | .389 | | TG | 52.498 | 17.018 | 3.135 | 3.134 | 3.149 | 3.149 | 3.115 | 3.115 | 12.754 | 12.756 | 12.757 | ,389 | ,389 | ,390 | .390 | | T7 | 52.523 | 17.095 | 3.137 | 3.137 | 3.138 | 3.138 | 3.112 | 3.112 | 12.728 | 12.723 | 12.730 | . 390 | .390 | .390 | .390 | | T8 | 52.544 | 17.079 | 3.133 | 3.133 | 3.139 | 3.139 | 3.113 | 3.114 | 12.682 | 12.488 | 12.687 | ,390 | .390 | ,390 | 390 | Date: 1/- 7-13 #### **Tensile Specimen Dimensional Record Sheet (continuation)** Sheet 2 of 3 Measurement Operator Name: James Reseigh Signature: James Rening's | Specimen | OAL | С | W ₁ (| mm) | W ₂ | (mm) | W _c | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|------------------|-------|----------------|-------|----------------|-------|--------|---------|---------|------------------|-------|------------------|-------| | . ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T9 | 52.568 | 17.104 | 3.131 | 3.131 | 3.135 | 3.135 | 3.109 | 3.109 | 12.788 | 12.791 | 12.786 | .389 | .389 | . 389 | .389 | | TID | 52.599 | 17.121 | 3.132 | 3.132 | 3.134 | 3.136 | 3.110 | 3.109 | 12.795 | 12.801 | 12.7941 | .391 | .39/ | . 39/ | . 391 | | TII | 52.637 | 17.180 | 3.133 | 3.134 | 3.132 | 3.132 | 3.115 | 3.115 | 12.695 | 12.706 | 12.700 | ,389 | .389 | .391 | . 391 | | T12 | 52.264 | 17.174 | 3.139 | 3.139 | 3.139 | 3.140 | 3.112 | 3.1/1 | 12.786 | 12.780 | 12.789 | .391 | .39/ | . 390 | . 389 | | T13 | 52.463 | 17.200 | 3.132 | 3.132 | 3.133 | 3.133 | 3.112 | 3.113 | 12.727 | 12.730 | 12.725 | .386 | .396 | . 389 | .389 | | T14 | 52.677 | 17.211 | 3.142 | 3.141 | 3.138 | 3.138 | 3.107 | 3.106 | 12.723 | 12.714 | 12.724 | .384 | .386 | . 386 | .386 | | T15 | 52.478 | 17.123 | 3.069 | 3.068 | 3.090 | 3.090 | 3.049 | 3.050 | 12.717 | 12.710 | 12.722 | .386 | ,387 | .388 | .388 | | T16 | 52.689 | 17.077 | 3.143 | 3.143 | 3.144 | 3.147 | 3.133 | 3./34 | 12.488 | 12.684 | 12.690 | .386 | .386 | .386 | . 386 | | T17 | 52.699 | 17.091 | 3.134 | 3.133 | 3.130 | 3.131 | 3.117 | 3.114 | 12.813 | 12.814 | 12.802 | .386 | .386 | . 388 | .387 | | T18 | 52.706 | 17.111 | 3.110 | 3.110 | 3.104 | 3.105 | 3.092 | 3.091 | 12.746 | 12.743 | 12.740 | .385 | .385 | .384 | . 386 | | TA | 52.706 | 17.109 | 3.101 | 3.101 | 3.107 | 3.107 | 3.053 | 3.052 | 12.736 | 12.740 | 12.738 | . 387 | .387 | .389 | .389 | | T20 | 51.340 | 15.315 | 3.134 | 3.136 | 3.131 | 3.131 | 3.119 | 3.119 | 12.682 | 12.681 | 12.681 | .389 | .389 | .389 | . 389 | | T21 | 51.361 | 15.302 | 3.134 | 3.137 | 3.140 | 3.140 | 3.129 | 3.128 | 12.780 | 12.782 | 12.782 | .386 | .386 | .386 | . 386 | | T22 | 51.352 | 15.314 | 3.133 | 3.134 | 3.134 | 3.134 | 3.114 | 3.114 | 12.783 | 12.785 | 12.788 | ,384 | .386 | . 389 | .389 | | T23 | 51.348 | 15.324 | 3.145 | 3.145 | 3.142 | 3.142 | 3.118 | 3.118 | 12.763 | 12.747 | 12.744 | . 386 | .386 | .388 | .388 | | T24 | 51.355 | 15.333 | 3.188 | 3.188 | 3.208 | 3.208 | 3.172 | 3.172 | 12.720 | 12.725 | 12.725 | . 389 | . 389 | . 389 | .389 | | T25 | 51.357 | 15.303 | 3.136 | 3.136 | 3.128 | 3.127 | 3.117 | 3.116 | 12839 | 12.838 | 12.840 | ,389 | .389 | .389 | . 389 | | T26 | 51.352 | 15.287 | 3.137 | 3.137 | 3.131 | 3.130 | 3.112 | 3.112 | 12.802 | 12.797 | 12.790 | .384 | .384 | .389 | .389 | | T27 | 51.354 | 15.266 | 3.138 | 3.138 | 3.129 | 3.128 | 3.109 | 3.109 | 12.703 | 12.705 | 12.701 | ,384 | . 386 | .389 | .389 | | T28 | 51.343 | 15.278 | 3.133 | 3.132 | 3.125 | 3.125 | 3.109 | 3.109 | 12.796 | 12.780 | 12.776 | .387 | .387 | .386 | .386 | T18 - 2 Conical indents on end opposite the Lable end. GL measurement is on the furthest indents apart 42 pate: //- 7-13 Tensile Specimen Dimensional Record Sheet (continuation) Sheet 3 of 3 Measurement Operator Name: James Reseigh Signature: Jame Ruigh | Specimen | OAL | С | W ₁ (| (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| (mm) | |----------|--------|--------|------------------|-------|----------------|------------|--------|-------|--------|---------|-----------|------------------|-------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T29 | 51.358 | 15.280 | 3.135 | 3.134 | 3.135 | 3.136 | 3.105 | 3.105 | 12.733 | 12.739 | 12.740 | .384 | . 386 | .384 | .386 | | T30 | 51.631 | 15.303 | 3.135 | 3.135 | 3.137 | 3.137 | 3.123 | 3.123 | 12.745 | 12.745 | 12.752 | .387 | .387 | .389 | .389 | | T31 | 51.635 | 15.303 | 3.134 | 3.133 | 3.130 | 3.131 | 3.110 | 3.111 | 12.751 | 12.756 | 12.754 | .384 | .386 | .389 | . 389 | | T32 | 51.635 | 15.301 | 3.135 | 3.135 | 3.131 | 3.131 | 3.114 | 3.114 | 12.740 | 12.741 | 12.738 | .387 | .387 | . 388 | .388 | | T33 | 51.647 | 15.290 | 3.136 | 3.135 | 3.122 | 3.122 | 3.104 | 3.104 | 12.807 | 12.813 | 12.806 | . 386 | .386 | .387 | .387 | | T34 | 51.650 | 5.341 | 3.090 | 3.089 | 3.073 | 3073 | 3.0417 | 3.047 | 12.810 | 12.796 | 12.795 | ,386 | . 386 | .387 | . 387 | | T35 | 51.468 | 15.460 | 3.145 | 3.144 | 3.148 | 3.148 | 3.123 | 3.123 | 12.689 | | 12.692 | .389 | .389 | . 390 | .390 | | T36 | 51.682 | 15.479 | 3.127 | 3.127 | 3.132 | 3.131 | 3.104 | 3.105 | 12.667 | 12.668 | 12.681 | .388 | .388 | . 39/ | .39/ | | Т37 | 51.698 | 15.484 | 3.120 | 3.120 | 3.115 | 3.114 | 3.097 | 3.097 | 12.760 | 12.740 | 12.738 | .387 | .387 | .388 | . 388 | | T38 | 51.700 | 15.542 | 3.104 | 3.105 | 3.112 | 3.113 | 3.051 | 3.052 | 12.729 | 12.723 | 12.721 | . 386 | ,386 | .388 | .388 | | | | | | | | | | 100 | | | III (FIRE | | | | | | | | | | | | | | 10 10 | PH IS | | | | | | | | H DIVIN | | | les d | | = 51.75 | TG TES | Variable 1 | | | | | | | | | | foil 551-2-2 Prefest Dimonsions **Tensile Specimen Dimensional Record Sheet** Date: 10-15-13 Name: James Reseigh Measurement Operator Signature: James Reseit Sheet 1 of 3 GL measurement instrument ID: ALTE Expiration Date: 4-11-14 Expiration Date: 4-11-14 W measurement instrument T measurement instrument ID: AU78 Temperature instrument 4 ID: ALGA ID: 730725 Expiration Date: 11-12-13 Expiration Date: 10-1-14 1. Locations to measure are indicated in the diagram. All
dimensions in mm, Record measurements to 0.001 mm, 2. Conical indent marks for GL are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). Measure W₁, W₂, and W_C two times. Reset reference zero for each measurement (two independent measurements). 4. Measure two thicknesses at each of two locations inside of gage mark indents as indicated. Measuring device contact surface should not cover the indent, Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements, 5. Record from temperature before starting and after completion of each group of measurements. | | W ₁ | (mm) | W ₂ | (mm) | W _C | (mm) | Les Ex | GL (mm) | | T ₁ | (mm) | T ₂ | (mm) | |-------------|----------------|-------|----------------|-------|----------------|-------|--------|---------|--------|----------------|-------|----------------|-------| | Specimen ID | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | 41 | 3.145 | 3.147 | 3.144 | 3.145 | 3.119 | 3.120 | 17.748 | 12.771 | 17.749 | .369 | 349 | .349 | .370 | | L2 | 3.148 | 3.148 | 3.152 | 3.152 | 3.130 | 3.130 | 12.703 | 17.712 | 12.703 | .374 | .374 | .377 | .377 | | _ L3 | 3.145 | 3.146 | 3.150 | 3.150 | 3.125 | 3125 | 12.741 | 12.748 | 12.767 | .377 | .377 | .380 | . 380 | | L4 | 3.155 | 3.156 | 3.151 | 3.152 | 3.130 | 3.129 | 12.493 | 12.693 | 12.687 | .378 | .378 | .582 | . 38/ | | 45 Invated | 3.373 | 3.373 | 3 505 | 3.504 | 3.418 | 3.418 | 12.782 | 12.784 | 12.785 | .384 | .383 | . 384 | .384 | | 46 | 3.148 | 3.148 | 3.145 | 3.145 | 3.133 | 3.132 | 12.750 | 12.743 | 12.744 | .384 | .387 | .388 | .38 | | L7 | 3.148 | 3.147 | 3.146 | 3.146 | 3.124 | 3.125 | 12.738 | 12.735 | 12.734 | .388 | , 387 | .388 | .390 | | L8 | 3.144 | 3.142 | 3.145 | 3.147 | 3.131 | 3.131 | 12.744 | 12.747 | 12.737 | .389 | 1389 | .389 | . 389 | | L9 | 3.144 | 3.145 | 3.138 | 3./38 | 3./32 | 3.132 | 12.752 | 12.746 | 12.745 | .389 | ,389 | .387 | .388 | | L10 | 3.150 | 3.150 | 3.164 | 3.144 | 3.141 | 3.140 | 12.741 | 12.761 | 12.77/ | .384 | .386 | .388 | . 388 | Sheet 2 of 3 Measurement Operator | | W ₁ (| (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ | (mm) | |-------------|------------------|--------|----------------|--------|-------|-------|---------|---------|--------|------------------|-------|----------------|-------| | Specimen ID | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | 41/ | 3.148 | 3 1419 | 3.144 | 3.143 | 3-129 | 3.129 | 12.758 | 12.752 | 12.755 | .382 | . 382 | 384 | .384 | | L 12 | 3,158 | 3.158 | 3.150 | 3.150 | 3.138 | 3.138 | 12.730 | 12.725 | 12.720 | .377 | .377 | . 378 | .379 | | 413 | 3.154 | 3.154 | 3.149 | 3./49 | 3.134 | 3.135 | 12.740 | 12.759 | 12.752 | .374/ | . 374 | .372 | . 372 | | L 29 | 3,143 | 3,143 | 3.141 | 3.141 | 3.114 | 3.114 | 12.771 | 12.774 | 12.770 | ,376 | .377 | ,375 | .375 | | L30 | 3.147 | 3.146 | 3.153 | 3.154 | 3/27 | 3.127 | 12.690 | 12.684 | 12.689 | .381 | ,38/ | .380 | .380 | | L31 | 3.140 | 3.140 | 3.140 | 3.141 | 3./32 | 3.131 | 12.725 | 12.731 | 12.728 | .385 | ,385 | ,385 | .384 | | L 32 | 3-1418 | 3.1419 | 3.149 | 3.148 | 3.129 | 3.129 | 12.7410 | 12.747 | 12.740 | ,388 | , 388 | 388 | .390 | | L 33 Immid | 3.371 | 3.37/ | 3513 | 3.512 | 34127 | 3.427 | 12.672 | 12.674 | 12-470 | .392 | . 392 | . 389 | .389 | | L 34 | 3.151 | 3.152 | 3.1-19 | 3.149 | 3.129 | 3.128 | 12.753 | 12.742 | 12.754 | ,391 | .39/ | .390 | .390 | | L 35 | 3.146 | 3.146 | 3.151 | 3.150 | 3.131 | 3.130 | 12.4.29 | 12.437 | 12.434 | , 392 | . 312 | .31/ | .39/ | | L 3% | 3.148 | 3.149 | 3.147 | 3.146 | 3.130 | 3.131 | 12.689 | 12.690 | 12.685 | .375 | .395 | 394 | 394 | | L37 | 3.143 | 3.143 | 3.144 | 3.144 | 3.12Z | 3.122 | 12.764 | 12.700 | 12.701 | 394 | . 314 | .312 | 392 | | T 28 | 3.146 | 3.147 | 3.158 | 3.158 | 3.143 | 3.143 | 12.729 | 12.724 | 12.72) | .394 | .394 | 393 | .392 | | L 39 | 3.143 | 3.14/2 | 3.142 | 3.1412 | 3.131 | 3./3/ | 12.736 | 12.730 | 12.738 | .388 | 388 | .387 | . 388 | Notes: Date: 10-15-13 #### Tensile Specimen Dimensional Record Sheet (continuation) Sheet 3 of 3 Measurement Operator | | -W ₁ (| mm) | W ₂ (| mm) - | W _c | (mm) | | GL (mm) | | T₁ (| mm) | T ₂ (| (mm) | |-------------|-------------------|-------|------------------|----------|----------------|--------------|---------|------------|--------|--------------|----------|------------------|------| | Specimen ID | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L40 | 3.154 | 3.154 | 3.158 | 3.157 | 3.146 | 3.147 | 12.754 | 12.757 | 12.741 | .387 | ,387 | 384 | .384 | | 5 441 | 3.155 | 3.154 | 3.148 | 3./48 | 3.138 | 3.138 | 12.741 | 12.747 | 12.740 | . 378 | .378 | .378 | .378 | Ì | | _ | <u> </u> | | | | | | | | | <u> </u> | | | | | - | - | ļ <u> </u> | _ | | <u> </u> | <u> </u> | <u> </u> | | <u></u> | | | | | | _ | | | - | | | | | | | | | | | | | Notes: | Testige | Specimen | specimen OAL | Specimen off | 10044 | 044 | 1 | |---------|----------|---------------|--|-------|-----|------------------------| | 350 ℃ | 141 | 50.46/50.46 | 50.60 / 60.60 | | - | Spend man dil est area | | | L Z | 50.44/50.44 | 50,97/50.86 | | | sittled ingrip | | | L3 | 50.47 / 50.45 | 50,81/50,83 | | | | | 14.1 | -4 | 50.47/50.46 | 51.98 /51.94 | | | | | | 45 | 50.45/50.45 | | 4 | | | | | 4-6 | 50,43/60.44 | | | | | | | L7 | 50.45/50.44 | | | | | | | | 50.45/50.44 | | | | | | | 49 | | | | | | | | LIO | 50,45 /50,44 | | | | | | ** | 711 | 50.43/50.44 | | | | | | | 412 | 50.45/50.44 | | | | | | | L13 | 50.46/50.45 | | | | | | 17 | L29 | 50.78 / 50.78 | | | \ | | | | 130 | 50.78 / 50.77 | | | | | | | 431 | 50.80 / 50.79 | | | | | | | L3Z | 50.75 /50.75 | | | | | | | L33 | 50.75/50.76 | | | | | | | 434 | 50,76/50.76 | | | | - | | | 135 | 50.76/50.76 | | | 1 1 | | | | L3.6 | 50.76/50.77 | 1612 | | / | | | | 437 | | | | | | | | | 50.77/50.76 | | | | | | | L38 | 50.79/50.78 | | | | | | | L37 | 50,79/50,79 | | | | | | | 40 | 50.81 /50.81 | ALC: NO PERSON PE | | | | | | 41 | 50.83/50.83 | | | | | | 1 | 2. | 7,00.03 | | | | | | | | 1 | | | | | | | | | | | \ | , | | | | | | | | | | measurement by califors expiration 3-21-2014 # 726313 >25117 Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ | (mm) | W_2 | (mm)_ | Wc | (mm) | | GL (mm) | | T ₁ | (mm) | T ₂ | (mm) | |----------|--------|--------|----------------|-------|-------|-------|-------|-------|--------|---------|--------|----------------|------|----------------|------| | . (D | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L2 | 51.120 | 15.378 | 3.134 | 3.132 | 3.138 | 3.137 | 3.106 | 3.107 | 13.277 | 13.270 | 13.271 | .378 | .378 | .379 | .379 | | L3 | 51.036 | 15.268 | 3.132 | 3.133 | 3.132 | 3.132 | 3.109 | 3.109 | 13.252 | 13.255 | 13.258 | .381 | .381 | .379 | .379 | | L4 | 52.129 | 15.406 | 3.074 | 3.075 | 3.062 | 3.062 | 3.020 | 3.021 | 13.920 | 13.921 | 13,918 | .363 | .363 | .365 | .365 | | L6 | 51.993 | 15.201 | 3.105 | 3.105 | 3.072 | 3.072 | 3.044 | 3.044 | 13.836 | 13.824 | 13.821 | . 36 5 | .365 | .366 | .366 | | L7 | 50.709 | 15.152 | 3.153 | 3.154 | 3.143 | 3.144 | 3.129 | 3.130 | 12.823 | 12.821 | 12.822 | .382 | .382 | .382 | .382 | | *L8 | 62.484 | 15.261 | 3.045 | 3.047 | 3.059 | 3.056 | 2.618 | 2.615 | 22.140 | 22.127 | 22.125 | .258 | .258 | .282 | .282 | | 1.9 | 62.535 | 15.256 | 3.002 | 3.003 | 3.051 | 3.055 | 2.509 | 2.515 | 23.167 | 23.135 | 23.152 | .256 | .256 | .246 | .246 | | *L10 | 60.445 | 15.192 | 3.015 | 3.014 | 3.014 | 3.014 | 2.744 | 2.748 | 20.946 | 20.928 | 20.929 | .281 | .281 | .272 | 272 | | Date: | 3/5/14 | Tensile Specimen Dimensional Record Sheet (| (continuation) | Sheet | 2 | of | |-------|--------|---|----------------|-------|---|----| | | | / | ' 1 1 | / | | | Meas | asuremen | t Operator | r Name: J | ames Re | seigh | | | | Signat | ure: fun | - the | my b | | |----------|------------|-----------|---------|-------|-------|-------|-------|--------|----------|---------|--------|---| | pecimen | OAL | Ç | W₁ | (mm) | W; | (mm) | Wc | (mm) | | GL (mm) | | Γ | | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | Γ | | 5 | 51.030 | 14.862 | 2.961 |
2.962 | 2.852 | 2.853 | 2.957 | 2.956 | 12.812 | 12.815 | 12.814 | Γ | | 6 | 51.565 | 15.540 | 2.942 | 2.943 | 2.997 | 2.998 | 2.953 | 2.954 | 13.160 | 13 167 | 13 173 | Γ | | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | W _C | (mm) | <u></u> | GL (mm) | | T ₁ | (mm) | T ₂ | (mm) | |---------------|--------|--------|----------------|-------|----------------|-------|----------------|-------|---------|---------|--------|----------------|------|----------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L15 | 51.030 | 14.862 | 2.961 | 2.962 | 2.852 | 2.853 | 2.957 | 2.956 | 12.812 | 12.815 | 12.814 | .384 | .384 | .384 | .383 | | L16 | 51.565 | 15.540 | 2.942 | 2.943 | 2.997 | 2.998 | 2.953 | 2.954 | 13.160 | 13.167 | 13.173 | .372 | .372 | .372 | .372 | | L17 | 51.132 | 15,169 | 3.129 | 3.128 | 3.111 | 3.112 | 3.113 | 3.113 | 12.784 | 12.791 | 12.788 | .372 | .372 | .372 | .372 | | L18 | 51.095 | 15.248 | 2.990 | 2.991 | 2.939 | 2.940 | 2.960 | 2.961 | 13.221 | 13.214 | 13.211 | .381 | .381 | .378 | .378 | | L19 | 51.126 | 15.258 | 3.028 | 3.027 | 2.982 | 2.983 | 3.003 | 3.003 | 12.787 | 12.788 | 12.786 | .380 | .380 | .378 | .378 | | L20 | 51.205 | 15.188 | 3.128 | 3.128 | 3.127 | 3.127 | 3.027 | 3.027 | 13.179 | 13.175 | 13.170 | .372 | .372 | .371 | .370 | | L21 | 50.846 | 15.320 | 2.962 | 2.961 | 2.993 | 2.993 | 2.975 | 2.976 | 12,704 | 12.718 | 12.709 | .372 | .372 | .372 | .372 | | L22 | 50.951 | 15.291 | 3.022 | 3.022 | 3.020 | 3.019 | 3.005 | 3.004 | 12.921 | 12.938 | 12.935 | .380 | .380 | .380 | .380 | | T 1 | 52.379 | 16.843 | 3.139 | 3.139 | 3.138 | 3.138 | 3.121 | 3.121 | 12.737 | 12.727 | 12.738 | .388 | .388 | .387 | .387 | | T2 | 52.647 | 16.876 | 3.136 | 3.136 | 3.131 | 3.131 | 3.110 | 3.110 | 12.925 | 12.922 | 12.928 | .387 | .386 | .389 | .389 | | Т3 | 52.615 | 16.917 | 3.138 | 3.139 | 3.141 | 3.143 | 3.117 | 3.118 | 12.713 | 12.711 | 12.709 | .385 | .385 | .386 | .386 | | T4 | 52.599 | 17.044 | 3.156 | 3.156 | 3.144 | 3.145 | 3.123 | 3.123 | 12.693 | 12.697 | 12.706 | .388 | .390 | .390 | .389 | | T5 | 52.638 | 16.996 | 3.217 | 3.217 | 3.196 | 3.196 | 3.183 | 3.183 | 12.877 | 12.877 | 12.864 | .388 | .388 | .386 | .386 | | T6 | 52.839 | 17.053 | 3.149 | 3.150 | 3.146 | 3.146 | 3.120 | 3.120 | 12.780 | 12.771 | 12.776 | .389 | .389 | .390 | 390 | | T7 | 52.937 | 17.040 | 3.141 | 3.142 | 3.148 | 3.149 | 3.114 | 3.114 | 12.737 | 12.752 | 12.746 | .388 | 388 | .389 | .389 | | *T8 | 61.782 | 17.304 | 3.069 | 3.050 | 3.047 | 3.056 | 3.027 | 3.027 | 19.149 | 19.151 | 19.182 | .258 | .258 | .246 | .245 | | *T9 | 58.556 | 17.234 | 3.034 | 3.035 | 3.099 | 3.101 | 2.982 | 2.983 | 17.433 | 17.436 | 17.436 | .311 | .311 | .320 | .320 | | * T 10 | 59.424 | 17.237 | 3.070 | 3.071 | 3.039 | 3.039 | 2.988 | 2.988 | 17.820 | 17.825 | 17.812 | .300 | .300 | .296 | .296 | | T11 | 52.867 | 17.180 | 3.137 | 3.137 | 3.133 | 3.133 | 3.115 | 3.114 | 12.935 | 12.932 | 12.920 | .389 | .389 | .389 | .389 | Measurement Notes (use back of sheet if needed): Note: * Tensile specimens L8, L9, L10, T8, T9, T10, were broke in such a way that it made it very difficult to line the specimens back up for inspection. The Conical indent marks were very faint and difficult to measure. 49 | Date: 3/5/14 Tensile Specimen Dimensional Record Sheet (continuation) Sheet 3 of | f 3 | |--|-----| |--|-----| Measurement Operator Name: James Reseigh Signature: Jame Surg's | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | Wc | (mm) | T | GL (mm) | | T ₁ | (mm) | T2 | (mm) | |----------|--|----------|----------------|------------|--|----------|--------------|--|--|--|--------|----------------|--|--------------|----------------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T12 | 52.865 | 17.171 | 3.134 | 3.134 | 3.139 | 3.141 | 3.116 | 3,116 | 12.956 | 12.942 | 12.944 | .387 | .387 | .387 | 387 | | T13 | 52.919 | 17.214 | 3.134 | 3.134 | 3.129 | 3.129 | 3.116 | 3.116 | 12.957 | 12.958 | 12.948 | .388 | 388 | .389 | .389 | | T14 | 52.863 | 17.236 | 3.138 | 3.137 | 3.143 | 3.144 | 3.114 | 3.113 | 12.914 | 12.918 | 12.922 | .385 | .385 | .384 | .385 | | | | | | <u> </u> | | | + | | <u> </u> | | | | 1 | | | | | | | | | | <u>-</u> | | | | 1 | ļ | | | | | | | - | - | | | | 1 | | <u> </u> | <u> </u> | | | | | | | | | | | _ | | | | | | | | | | | | | | | | ļ | | <u> </u> | | <u> </u> | | - | | | | | ļ. | - | | | | <u> </u> | | | | | | | | | - | | | | <u> </u> | | | | ļ | | | | | | | | ļ | | | | | | | | | | 1 | | | | 1 | 1 | <u> </u> | | | | | | ╁ | - | <u> </u> | | | ļ <u> </u> | | | 1 | | _ | | - | | - | <u> </u> | <u> </u> | | | | | _ | | | - | † | | - | | | | | | | | | <u>† </u> | <u> </u> | <u> </u> | | † | † | †·· | <u> </u> | 1 | 1 | | | | <u> </u> | | #### Foil 551-2-2 tretest Vinneusians Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_c two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ | (mm) | T ₂ (| mm) | |----------|---------|--------|----------------|-------|----------------|----------|--|--------------|--|---------|-------------|----------------|--|--|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | LI | 50.589 | 15.381 | 3.136 | 3136 | 3.139 | 3./39 | 3.115 | 3.116 | 12.800 | 12.794 | 12.798 | . 348 | .348 | ,370 | .370 | | L 2 | | | | | | | | 1 | | | 12 1,0 | | | 1,5,- | .0.0 | | L3 | | | | | † | | | | | | • | | | | | | L4 | | | | | | <u> </u> | | | | | | | - | <u> </u> | | | L5 | 50.438 | 15.153 | 3.347 | 3.368 | 3.494 | 3.494 | 3.404 | 3.407 | 12.774 | 12.774 | 12.741 | . 384 | .386 | .386 | . 386 | | LG | 50.438 | 15.109 | 3.149 | 3.148 | 3.139 | 3.138 | 3.121 | 3.121 | 12.743 | 12.747 | 12.749 | .388 | .388 | .388 | .388 | | | 50.436 | 15.074 | 3.135 | 3.135 | 3.142 | 3.142 | 3.124 | 3.124 | 12.741 | 12737 | 12.731 | .390 | .390 | . 391 | . 39/ | | 78 | 50.4/29 | 15.061 | 3.144 | 3.144 | 3.148 | 3.148 | 3.137 | 3.137 | 12.734 | 12.737 | 12.735 | | 386 | .387 | 388 | LI was tested on 16 oct 2013 so these Dimensions are post test values. The rest are pre-test values 11-6-13 Tensile Specimen Dimensional Record Sheet (continuation) nes laseigh Signature: fame hunge Sheet 2 of 2 Measurement Operator Name: Junes Roseigh | Specimen | OAL | С | W ₁ (| (mm) | W ₂ (| (mm) | W _C | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| (mm) | |----------|---------|--------|------------------|--------|------------------|-------|----------------|-------|--------|------------------|--------|------------------|----------|------------------|--------------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L9 | 50.4/34 | 15.009 | 3.140 | 3.160 | 3.137 | 3.137 | 3.129 | 3.129 | 12.741 | 12.742 | 12.739 | .384 | .386 | .388 | . 388 | | L10 | 50.440 | 14.939 | 3.146 | 3.146 | 3.140 | 3.140 | 3.130 | 3.129 | 12.749 | 12.761 | 12.759 | .384 | . 384 | .384 | .384 | | LU | 50.4/37 | 14.944 | 3.136 | 3.134 | 3.142 | 3.142 | 3.121 | 3.120 | 12.752 | 12.748 | 12.755 | .383 | .383 | . 383 | 383 | | L12_ | 50.454 | 14.857 | 3.155 | 3.155 | 3.153 | 3./53 | 3.138 | 3.139 | 12.713 | 12.710 | 12.709 | 378 | .378 | .378 | .378 | | L13 | 50.466 | 14.844 | 3.154 | 3.154 | 3.146 | 3.145 | 3.136 | 3.134 | 12.743 | 12.743 | 12.741 | 375 | 375 | .371 | .37/ | | L 29 | 50.747 | 15.347 | 3.137 | 3.137 | 3.139 | 3.138 | 3.111 | 3.01 | 12.748 | 12.757 | 12.754 | .374 | .374 | 374 | .374 | | L30 | 50.799 | 15.408 | 3.144 | 3.144 | 3.150 | 3.150 | 3.120 | 3.119 | 12.681 | 12.673 | 12.474 | .381 | .381 | 381 | .381 | | L31 | 50.782 | 15.374 | 3.135 | 3.136 | 3.133 | 3.133 | 3.123 | 3.123 | 12.725 | 12.734 |
12.735 | ,381 | .381 | 383 | . 383 | | L32 | 50.775 | 15.421 | 3.151 | 3.151 | 3.145 | 3.144 | 3.124 | 3.124 | 12.740 | 12.747 | 12.748 | 384 | 386 | 386 | 386 | | L 33 | 50.766 | 15.185 | 3.370 | 3.370 | 3.503 | 3.502 | 3.417 | 3.416 | 12.713 | 12.723 | 12.721 | .391 | .391 | .391 | . 391 | | L34 | 50.768 | 15.134 | 3.151 | 3.151 | 3./39 | 3.140 | 3.128 | 3.129 | 12.744 | 12.745 | 12.751 | .39/ | . 391 | 391 | .39/ | | L 35 | 50.767 | 15.095 | 3./38 | 3.138 | 3.145 | 3.145 | 3.128 | 3.127 | 12.409 | 12.612 | 12.606 | .311 | .391 | .372 | .392 | | | 50.770 | 15.081 | 3.147 | 3.147 | 3.144 | 3.145 | 3.134 | 3.135 | 12.687 | 12.674 | 12.679 | .313 | 393 | 391 | .391 | | L 37 | 50.781 | 15.034 | 3.144 | 3.144 | 3.141 | 3.140 | 3.124 | 3.123 | 12.716 | 12.710 | 12.718 | 391 | .39/ | 391 | 39/ | | L 38 | 50.789 | 14.984 | 3.152 | 3.152 | 3.150 | 3.150 | 3.139 | 3.139 | 12.713 | 12.718 | 12.720 | .388 | .388 | .388 | . 388 | | L 39 | 50.797 | 14.978 | 3.142 | 3.14/2 | 3.139 | 3.139 | 3.128 | 3.127 | 12.73% | 12.734 | 12.738 | ,387 | , 387 | . 384 | .386 | | L40 | 50.815 | 14.926 | 3.161 | 3.166 | 3.154 | 3.154 | 3/38 | 3.138 | 12.731 | | 12.743 | .384 | .384 | .381 | 38/ | | L41 | 50 839 | 14.903 | 3.164 | 3.164 | 3.147 | 3.147 | 3.133 | 3.133 | 12.745 | 12.735 | 12.740 | ,376 | .376 | 374 | + | | | | | | | | | | | , | مبري. <u>- ر</u> | 12.775 | , ,,,,, | 1)10 | , 5/4 | , 374 | | | | | | | | - | | | · | | | | <u> </u> | | ├ | Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - 1. Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ (| mm) | W ₂ (| mm) | W _c (| mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|------------------|-------|------------------|-------|------------------|-------|--------|---------|--------|------------------|------|------------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L29 | 50.695 | 15.182 | 3.194 | 3.195 | 3.195 | 3.195 | 3.175 | 3.175 | 12.705 | 12.720 | 12.714 | .374 | .376 | .376 | .376 | | L30 | 50.690 | 15.354 | 3.198 | 3.198 | 3.195 | 3.195 | 3.174 | 3.174 | 12.712 | 12.710 | 12.706 | .383 | .383 | .382 | .382 | | L31 | 50.688 | 15.377 | 3.190 | 3.190 | 3.189 | 3.189 | 3.168 | 3.168 | 12.752 | 12.751 | 12.748 | .384 | .384 | .383 | .383 | | L32 | 50.696 | 15.348 | 3.192 | 3.193 | 3.189 | 3.189 | 3.175 | 3.175 | 12.709 | 12.708 | 12.701 | .388 | .388 | .389 | .389 | | L33 | 50.692 | 15.361 | 3.196 | 3.195 | 3.193 | 3.194 | 3.166 | 3.166 | 12.710 | 12.706 | 12.700 | .390 | .390 | .391 | .391 | | L34 | 50.688 | 15.329 | 3.190 | 3.190 | 3.190 | 3.191 | 3.167 | 3.167 | 12.770 | 12.774 | 12.780 | .390 | .390 | .390 | .391 | | L35 | 50.683 | 15.322 | 3.191 | 3.191 | 3.196 | 3.195 | 3.161 | 3.162 | 12.666 | 12.669 | 12.661 | .391 | .392 | .392 | .391 | | L36 | 50.682 | 15.293 | 3.190 | 3.190 | 3.189 | 3.189 | 3.173 | 3.174 | 12.753 | 12.754 | 12.758 | .393 | .393 | .393 | .393 | | Date: 5/1/14 | Tensile Specimen Dime | ensional Record Sheet (continuation) | Sheet 2 of 2 | |--------------------------------|-----------------------|--------------------------------------|--------------| | Measurement Operator Name: Jap | us Reseigh | Signature: Jan Brung! | | | Specimen | OAL | С | W ₁ (| mm) | W ₂ (| (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |--------------|------------|---------|------------------|-------|----------------------|---------|-------|-------|---------------|---------|--------|------------------|---------|------------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L37 | 50.692 | 15.256 | 3.190 | 3.190 | 3.192 | 3.192 | 3.171 | 3.170 | 12.769 | 12.772 | 12.771 | .390 | .390 | .391 | .391 | | L38 | 50.698 | 15.325 | 3.200 | 3.200 | 3.196 | 3.195 | 3.167 | 3.167 | 12.728 | 12.730 | 12.738 | .387 | .387 | .387 | .387 | | L39 | 50.698 | 15.298 | 3.203 | 3.204 | 3.194 | 3.194 | 3.184 | 3.183 | 12.684 | 12.681 | 12.687 | .387 | .386 | .387 | .387 | | L40 | 50.700 | 15.280 | 3.184 | 3.184 | 3.185 | 3.186 | 3.169 | 3.169 | 12.720 | 12.721 | 12.725 | .381 | .381 | .381 | .381 | | L41 | 50.705 | 15.294 | 3.174 | 3.174 | 3.184 | 3.184 | 3.165 | 3.165 | 12.645 | 12.641 | 12.641 | .378 | 378 | .377 | .378 | | | 医毒虫 | | Y THE | | Butte | | 7 | | 49-19 | | | | | Part and | | | | | | | | | 7,4,4,5 | 177-2 | | | | | A | | | 460 | | | | MARI | | | | | | | | | | | | | | | 业, 这是 | | | | | | | | | 7 | | | 57.4 | | | | | | | | | | | | | | | | | EM (| | | | | | i dene i m | 121.19 | WILL | | Willem | | | | <u>France</u> | | | | | | | | | | 78-18-1 | | | | J271 74 | | | | | | | THE ACT | | Æ. | | | | | | | V _a atili | | D/ 20 | | | | 3 5 6 | A TAKE | | | | Foil 551-3 Pre-Test Dimonstons Date: 4/14/14 Tensile Specimen Dimensional Record Sheet (continuation) Sheet 1 of 3 Measurement Operator Name: James Reseigh Signature: OAL measurement instrument ID: A678 GL measurement instrument ID: A678 W measurement instrument ID: A678 T measurement instrument ID: A609 Temperature instrument ID: A51610 Start of Measurements: 64.3C* Expiration Date: 4/9/15 Expiration Date: 4/9/15 Expiration Date: 4/9/15 Expiration Date: 11/13/14 Expiration Date: 10/22/14 nts: 64.3C° End of Measurements: 67.8C° Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - 1. Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | | W₁ (mm) | | W ₂ (| mm) | W _c (| (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (mm) | | |----------|--------|--------|---------|-------|------------------|---------|------------------|-------|--------|---------|--------|------------------|------|---------------------|------| | ID | (mm) | | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L1 | 50.490 | 15.154 | 3.200 | 3.199 | 3.196 | 3.196 | 3.166 | 3.165 | 12.732 | 12.739 | 12.742 | .366 | .366 | .365 | .365 | | L2 | 50.456 | 15.081 | 3.196 | 3.195 | 3.202 | 3.202 | 3.190 | 3.190 | 12.713 | 12.712 | 12.703 | .369 | .369 | .371 | .371 | | L3 | 50.452 | 15.099 | 3.193 | 3.193 | 3.201 | 3.202 | 3.171 | 3.171 | 12.687 | 12.690 | 12.699 | .377 | .377 | .375 | .375 | | L4 | 50.441 | 15.086 | 3.194 | 3.194 | 3.186 | . 3.187 | 3.167 | 3.166 | 12.753 | 12.765 | 12.750 | .379 | .379 | .381 | .381 | | L5 | 50.438 | 15.104 | 3.189 | 3.189 | 3.196 | 3.197 | 3.184 | 3.183 | 12.697 | 12.691 | 12.694 | .385 | .385 | .386 | .386 | | L6 | 50.440 | 15.078 | 3.193 | 3.192 | 3.191 | 3.191 | 3.166 | 3.166 | 12.672 | 12.672 | 12.679 | .387 | .387 | .386 | .386 | | L7 | 50.436 | 15.083 | 3.188 | 3.188 | 3.197 | 3.196 | 3.171 | 3.169 | 12.737 | 12.738 | 12.732 | .386 | .386 | .385 | .385 | | L8 | 50.437 | 15.113 | 3.204 | 3.205 | 3.193 | 3.193 | 3.184 | 3.183 | 12.747 | 12.746 | 12.757 | .387 | .387 | .387 | .387 | . . Date: 4/14/14 ### **Tensile Specimen Dimensional Record Sheet (continuation)** Sheet 2 of 3 Measurement Operator Name: James Reseigh Signature: Jose hung f | Specimen | OAL | С | W ₁ (| (mm) | W ₂ (| (mm) | W _c | (mm) | | GL (mm) | | T ₁ (mm) | | T ₂ (mm) | | |----------|--------|--------|------------------|-------|------------------|-------|----------------|-------|--------|---------|--------|---------------------|------|---------------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L9 | 50.440 | 15.104 | 3.191 | 3.192 | 3.187 | 3.188 | 3.164 | 3.165 | 12.688 | 12.682 | 12.680 | .386 | .386 | .386 | .386 | | L10 | 50.432 | 15.091 | 3.195 | 3.194 | 3.191 | 3.191 | 3.174 | 3.174 | 12.727 | 12.731 | 12.732 |
.384 | .384 | .384 | .384 | | L11 | 50.422 | 15.093 | 3.199 | 3.199 | 3.186 | 3.185 | 3.167 | 3.167 | 12.768 | 12.776 | 12.778 | .382 | .382 | .382 | .382 | | L12 | 50.415 | 15.080 | 3.187 | 3.186 | 3.196 | 3.196 | 3.183 | 3.184 | 12.690 | 12.690 | 12.688 | .378 | .378 | .378 | .378 | | L13 | 50.416 | 15.084 | 3.195 | 3.195 | 3.193 | 3.193 | 3.186 | 3.187 | 12.714 | 12.713 | 12.717 | .371 | .371 | .373 | .373 | | T1 | 50.535 | 15.075 | 3.200 | 3.199 | 3.186 | 3.185 | 3.175 | 3.175 | 12.669 | 12.666 | 12.670 | .387 | .387 | .388 | .388 | | T2 | 50.542 | 15.093 | 3.199 | 3.200 | 3.195 | 3.195 | 3.177 | 3.177 | 12.686 | 12.691 | 12.682 | .387 | .387 | .386 | .386 | | Т3 | 50.536 | 15.085 | 3.192 | 3.192 | 3.195 | 3.195 | 3.164 | 3.164 | 12.794 | 12.776 | 12.781 | .388 | .388 | .389 | .389 | | T4 | 50.529 | 15.051 | 3.194 | 3.194 | 3.189 | 3.190 | 3.176 | 3.176 | 12.712 | 12.711 | 12.718 | .388 | .388 | .389 | .389 | | T5 | 50.526 | 15.050 | 3.186 | 3.187 | 3.189 | 3.189 | 3.169 | 3.169 | 12.741 | 12.742 | 12.749 | .386 | .386 | .388 | .388 | | T6 | 50.529 | 15.066 | 3.184 | 3.184 | 3.190 | 3.190 | 3.162 | 3.161 | 12.689 | 12.696 | 12.694 | .387 | .387 | .390 | .390 | | T7 | 50.508 | 15.030 | 3.188 | 3.188 | 3.186 | 3.187 | 3.160 | 3.159 | 12.774 | 12.778 | 12.771 | .387 | .387 | .390 | .390 | | T8 | 50.493 | 15.004 | 3.191 | 3.191 | 3.193 | 3.192 | 3.167 | 3.168 | 12.643 | 12.640 | 12.638 | .390 | .390 | .390 | .390 | | Т9 | 50.493 | 15.004 | 3.191 | 3.191 | 3.194 | 3.194 | 3.167 | 3.167 | 12.623 | 12.633 | 12.629 | .389 | .389 | .387 | .387 | | T10 | 50.472 | 14.988 | 3.185 | 3.186 | 3.189 | 3.189 | 3.161 | 3.161 | 12.861 | 12.850 | 12.856 | .389 | .389 | .388 | .388 | | T11 | 50.462 | 14.990 | 3.192 | 3.192 | 3.188 | 3.188 | 3.167 | 3.167 | 12.729 | 12.729 | 12.739 | .390 | .389 | .390 | .390 | | T12 | 50.456 | 14.946 | 3.189 | 3.189 | 3.195 | 3.196 | 3.169 | 3.169 | 12.730 | 12.728 | 12.730 | .388 | .389 | .391 | .391 | | T13 | 50.442 | 14.916 | 3.196 | 3.196 | 3.194 | 3.193 | 3.165 | 3.165 | 12.717 | 12.729 | 12.716 | .390 | .390 | .390 | .390 | | T14 | 50.435 | 14.908 | 3.180 | 3.180 | 3.190 | 3.190 | 3.167 | 3.166 | 12.749 | 12.756 | 12.747 | .390 | .390 | .391 | .391 | | Date: | 4/14/14 | Tensile Specimen | Dimensional Record Sheet (continuation) | |-------|------------------------|------------------|---| | Meas | urement Operator Name: | James Reseigh | Signature: John Lung | Sheet 3 of 3 | Specimen | OAL | C
(mm) | W ₁ (| (mm) | W ₂ (| (mm) | W _C | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |-------------|--------|-----------|------------------|-------|------------------|--------|----------------|----------|--------|-----------|--------|------------------|------|------------------|-------| | ID | (mm) | | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T15 | 50.467 | 14.898 | 3.197 | 3.198 | 3.199 | 3.199 | 3.186 | 3.186 | 12.870 | 12.868 | 12.865 | .390 | .389 | .390 | .390 | | T16 | 50.478 | 14.920 | 3.193 | 3.193 | 3.185 | 3.184 | 3.168 | 3.169 | 12.736 | 12.742 | 12.752 | .389 | .389 | .390 | .391 | | T17 | 50.476 | 14.878 | 3.183 | 3.181 | 3.192 | 3.193 | 3.156 | 3.156 | 12.721 | 12.727 | 12.727 | .388 | .388 | .389 | .389 | | T18 | 50.478 | 14.886 | 3.190 | 3.190 | 3.186 | 3.186 | 3.165 | 3.164 | 12.722 | 12.726 | 12.737 | .389 | .389 | .390 | .389 | | T19 | 50.467 | 14.862 | 3.209 | 3.210 | 3.194 | 3.193 | 3.162 | 3.163 | 12.816 | 12.815 | 12.812 | .389 | .390 | .390 | .388 | | | | | | | | | | 2 4-10 | | | | | | Mary By | | | geleja
1 | HENT. | | | | | | | | 9-31 | | | | in the | | Alchie. | | | GE) | | | | | | | | To the | | | | | | | | | | | | | | | | <u>Estiji</u> | | | <u> </u> | | | | | | New Year | P WE | | | 275 | | | | | | | 11317 | | | | | | | 7012 | | da balan | | | | | | | | | | Bear Wall | | | | | MM | Foil 551-3 Post Teor Dimensions Foil 551-5 Post Tost Dimensions Tensile Specimen Dimensional Record Sheet (continuation) Date: 7/9/14 - L/2 Measurement Operator Name: James Reseigh 7.75 (,305") Expiration Date: 4/9/15 OAL measurement instrument ID: A678 GL measurement instrument ID: A678 Expiration Date: 4/9/15 W measurement instrument ID: A678 Expiration Date: 4/9/15 T measurement instrument ID: A609 Expiration Date: 11/13/14 Temperature instrument ID: A52393 Expiration Date: 6/23/15 WI W2 End of Measurements: 19.0C* Start of Measurements: 19.3C* Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen
ID | OAL | C
(mm) | W ₁ (mm) | | W ₂ (| mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------------|--------|-----------|---------------------|-------|------------------|-------|-------|-------|--------|---------|--------|------------------|------|------------------|------| | | (mm) | | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | 551-3 L29 | 51.552 | 15.442 | 3.168 | 3.168 | 3.156 | 3.156 | 3.123 | 3.123 | 13.394 | 13.397 | 13.393 | .370 | .371 | .371 | .372 | | 551-5 L1 | 52.211 | 15.544 | 3.126 | 3.126 | 3.130 | 3.129 | 2.879 | 2.879 | 14.082 | 14.084 | 14.085 | .499 | .500 | .487 | .487 | | L2 | 52.445 | 15.387 | 3.162 | 3.162 | 3.120 | 3.118 | 1.991 | 1.992 | 14.285 | 14.285 | 14.281 | .518 | .518 | .506 | .506 | | L3 | 52.387 | 15.416 | 3.148 | 3.148 | 3.131 | 3.132 | 2.916 | 2.195 | 14.239 | 14.240 | 14.238 | .520 | .520 | .502 | .502 | | L4 | 52.655 | 15.429 | 3.113 | 3.113 | 3.112 | 3.112 | 2.112 | 2.113 | 14.520 | 14.527 | 14.531 | .520 | .519 | .507 | .506 | | L5 | 51.351 | 15.417 | 3.185 | 3.186 | 3.190 | 3.190 | 3.150 | 3.149 | 13.292 | 13.299 | 13.293 | .498 | .498 | .504 | .504 | | L6 | 51.687 | 15.378 | 3.166 | 3.165 | 3.134 | 3.134 | 3.130 | 3.130 | 13.592 | 13.587 | 13.587 | .509 | .510 | .512 | .512 | | L10 | 55.825 | 15.466 | 3.026 | 3.025 | 2.986 | 2.986 | 2.768 | 2.767 | 17.307 | 17.293 | 17.292 | .424 | .424 | .428 | .428 | | | 1 | | | | 1 | 1 | | 1 | | | | | | | | Date: 7/9/14 # Tensile Specimen Dimensional Record Sheet (continuation) nes Reseigh Signature: Jame Army? Measurement Operator Name: James Reseigh | Specimen | OAL | C
(mm) | W ₁ (| mm) | W ₂ (| (mm) | W _c (| (mm) | | GL (mm) | | T ₁ (I | mm) | T ₂ (| mm) | |----------|--------|-----------|------------------|-------|------------------|-------|------------------|-------|--------|---------|--------|-------------------|------|------------------|------| | ID | (mm) | | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L11 | 57.060 | 15.482 | 2.982 | 2.982 | 2.977 | 2.977 | 2.737 | 2.737 | 18.144 | 18.452 | 18.140 | .416 | .416 | .406 | .407 | | L12 | 56.576 | 15.432 | 3.044 | 3.044 | 2.907 | 2.907 | 2.762 | 2.762 | 17.789 | 17.785 | 17.776 | .430 | .430 | .409 | .409 | | T1 | 50.871 | 15.347 | 3.217 | 3.217 | 3.229 | 3.229 | 3.195 | 3.195 | 12.863 | 12.861 | 12.860 | .532 | .532 | .543 | .543 | | T2 | 50.909 | 15.340 | 3.175 | 3.174 | 3.172 | 3.172 | 3.156 | 3.156 | 12.864 | 12.865 | 12.867 | .545 | .545 | .544 | .548 | | Т3 | 50.832 | 15.383 | 3.196 | 3.196 | 3.182 | 3.182 | 3.163 | 3.162 | 12.861 | 12.871 | 12.863 | .547 | .547 | .544 | .544 | | T4 | 51.066 | 15.380 | 3.184 | 3.183 | 3.188 | 3.189 | 3.161 | 3.161 | 12.946 | 12.941 | 12.941 | .537 | .537 | .537 | .537 | | T5 | 51.202 | 15.391 | 3.194 | 3.194 | 3.176 | 3.174 | 3.159 | 3.158 | 13.118 | 13.115 | 13.122 | .536 | .536 | .537 | .537 | | T6 | 51.440 | 15.375 | 3.183 | 3.183 | 3.181 | 3.181 | 3.162 | 3.161 | 13.359 | 13.360 | 13.359 | .537 | .537 | .530 | .530 | | T10 | 57.439 | 15.487 | 2.955 | 2.957 | 3.003 | 3.003 | 2.798 | 2.799 | 18.597 | 18.594 | 18.583 | .404 | .404 | .365 | .366 | | T11 | 57.278 | 15.431 | 2.993 | 2.992 | 3.006 | 3.006 | 2.882 | 2.883 | 18.527 | 18.523 | 18.531 | .396 | .396 | .415 | .41 | | T12 | 57.620 | 15.448 | 2.979 | 2.978 | 3.036 | 3.036 | 2.918 | 2.918 | 18.702 | 18.710 | 18.691 | .400 | .400 | .430 | .430 | | 551-3 L1 | 51.680 | 15.138 | 3.159 | 3.159 | 3.158 | 3.157 | 2.965 | 2.966 | 13.830 | 13.833 | 13.835 | .358 | .358 | .357 | .35 | | L2 | 51.718 | 15.142 | 3.144 | 3.143 | 3.155 | 3.155 | 2.975 | 2.974 | 13.862 | 13.855 | 13.850 | .356 | .356 | .363 | .36 | | L3 | 51.710 | 15.156 | 3.171 | 3.171 | 3.156 | 3.156 | 2.990 | 2.990 | 13.845 | 13.842 | 13.843 | .361 | .361 | .369 | .369 | | L4 | 52.398 | 15.232 | 3.104 | 3.105 | 3.104 | 3.102 | 3.014 | 3.014 | 14.473 | 14.475 | 14.484 | .363 | .363 | .361 | .36 | | L5 | 52.419 | 15.138 | 3.049 | 3.049 | 3.115 | 3.115 | 3.059 | 3.058 | 14.343 | 14.340 | 14.342 | .362 | .362 | .370 | .370 | | L6 | 52.351 | 15.125 | 3.088 | 3.088 | 3.110 | 3.111 | 3.012 | 3.013 | 14.471 | 14.483 | 14.475 | .362 | .362 | .371 | .36 | | L7 | 51.083
| 15.100 | 3.170 | 3.169 | 3.163 | 3.164 | 3.117 | 3.117 | 13.203 | 13.198 | 13.206 | .380 | .380 | .384 | .38 | | L8 | 51.093 | 15.114 | 3.129 | 3.129 | 3.193 | 3.193 | 3.151 | 3.151 | 13.145 | 13.143 | 13.149 | .385 | .385 | .385 | .38 | | L9 | 51.409 | 15.107 | 3.180 | 3.179 | 3.079 | 3.079 | 3.129 | 3.130 | 13.106 | 13.110 | 13.114 | .384 | .384 | .384 | .38 | | Tate: | 7/9/14 | Tensile Specimen Dimensional Record Sheet (continuation | |-------|--------|---| | Jule. | 113114 | . Onone openment Dimensional Record of Continues | Sheet 3 of 3 Measurement Operator Name: James Reseigh Signature: John hungit | Specimen | OAL | С | W ₁ (| mm) | W ₂ | (mm) | W _c | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|------------------|-------|----------------|-------|----------------|-------|--------|---------|--------|------------------|------|------------------|---------------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L10 | 60.781 | 15.424 | 2.778 | 2.779 | 2.980 | 2.979 | 2.528 | 2.528 | 21.465 | 21.465 | 21.474 | .251 | .251 | .278 | .278 | | L11 | 59.039 | 15.300 | 2.834 | 2.833 | 2.995 | 2.993 | 2.357 | 2.356 | 20.294 | 20.289 | 20.286 | .266 | .265 | .290 | .293 | | L12 | 61.740 | 15.133 | 2.880 | 2.879 | 2.831 | 2.830 | 2.111 | 2.110 | 22.488 | 22.486 | 22.494 | .270 | .270 | .270 | .270 | | L13 | 51.338 | 15.105 | 3.155 | 3.155 | 3.156 | 3.157 | 3.088 | 3.089 | 13.457 | 13.452 | 13.456 | .373 | .373 | .375 | .375 | | 551-3 T1 | 51.613 | 15.078 | 3.151 | 3.150 | 3.148 | 3.148 | 3.080 | 3.079 | 13.628 | 13.624 | 13.626 | .376 | .375 | .385 | .384 | | T2 | 51.623 | 15.105 | 3.134 | 3.133 | 3.157 | 3.157 | 3.087 | 3.087 | 13.650 | 13.651 | 13.647 | .376 | .376 | .383 | .383 | | Т3 | 51.568 | 15.085 | 3.128 | 3.128 | 3.159 | 3.159 | 3.089 | 3.088 | 13.673 | 13.673 | 13.672 | .380 | .380 | .383 | .384 | | T4 | 52.281 | 15.073 | 3.063 | 3.063 | 3.086 | 3.087 | 3.039 | 3.039 | 14.260 | 14.242 | 14.237 | .378 | .378 | .372 | .372 | | T5 | 52.813 | 15.076 | 3.099 | 3.098 | 3.029 | 3.029 | 2.959 | 2.959 | 14.778 | 14.767 | 14.769 | .372 | .372 | .369 | .36 | | T6 | 52.367 | 15.166 | 3.039 | 3.038 | 3.130 | 3.130 | 3.037 | 3.068 | 14.249 | 14.241 | 14.247 | .376 | .376 | .383 | .383 | | *T7 | See | Note | | | | | | | | | | | | | $\overline{}$ | | T8 | 51.337 | 15.038 | 3.191 | 3.191 | 3.199 | 3.199 | 3.116 | 3.115 | 13.301 | 13.314 | 13.307 | .388 | .388 | .391 | .39 | | Т9 | 51.185 | 15.029 | 3.165 | 3.165 | 3.172 | 3.173 | 3.108 | 3.107 | 13.408 | 13.406 | 13.409 | .389 | .389 | .394 | .394 | | T10 | 60.966 | 15.119 | 2.952 | 2.952 | 2.842 | 2.843 | 2.587 | 2.589 | 21.592 | 21.597 | 21.589 | .267 | .267 | .254 | .25 | | T11 | 59.841 | 15.092 | 2.922 | 2.922 | 2.918 | 2.917 | 2.447 | 2.445 | 20.657 | 20.672 | 20.672 | .257 | .258 | .288 | .28 | | T12 | 60.510 | 15.070 | 2.902 | 2.902 | 2.922 | 2.922 | 2.631 | 2.631 | 21.206 | 21.203 | 21.195 | .254 | .254 | .291 | .29 | | T13 | 51.410 | 14.929 | 3.151 | 3.152 | 3.170 | 3.169 | 3.127 | 3.126 | 13.506 | 13.504 | 13.505 | .391 | .391 | .390 | .39 | 10 | Measurement Notes (use back of sheet if needed): T7 Broke in 3 pieces not able to get accurate measurements without additional fixturing. Foil 551-4 Pre-Test Dimensions 2-13-14 Tensile Specimen Dimensional Record Sheet (continuation) - L/2 Measurement Operator Name: James Reseigh Signature: John busy 7.75 7.75 (.305") (.305") Expiration Date: 4/-11-14 OAL measurement instrument ID: AUTB Expiration Date: 4/-11-14 GL measurement instrument ID: AG78 Expiration Date: 4-11-14 W measurement instrument ID: A 478 -T1 Expiration Date: 11-13-14 T measurement instrument ID: AG09 Temperature instrument ID: A5KID Expiration Date: 10-22-14 Wz WI Start of Measurements: 19.4 C End of Measurements: 18.6 C Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| (mm) | T ₂ (| (mm) | |----------|--------|--------|----------------|-------|----------------|-------|-------|-------|--------|---------|--------|------------------|-------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | TI | 50,430 | 15.240 | 3.038 | 3.038 | 3.045 | 3.045 | 3.009 | 3.008 | 12.743 | 12.751 | 12.754 | , 389 | ,389 | .388 | ,388 | | T2 | 50.593 | 15.369 | 3.198 | 3.198 | 3.198 | 3.197 | 3.171 | 3.172 | 12.744 | 12.772 | 12.770 | .389 | . 388 | .389 | . 389 | | T3 | 50.621 | 15.345 | 3.184 | 3.184 | 3,198 | 3.199 | 3.165 | 3.165 | 12.747 | 12.740 | 12.762 | .390 | .390 | .389 | 389 | | T4 | 50.740 | 15.362 | 3.191 | 3.191 | 3.200 | 3.200 | 3.166 | 3.166 | 12.727 | 12.719 | 12.717 | .389 | 389 | ,388 | .388 | | T5 | 50.704 | 15.349 | 3.192 | 3.192 | 3.201 | 3.201 | 3.169 | 3.170 | 12.780 | 12.783 | 12.771 | 390 | 390 | .387 | .387 | | TG | 50.741 | 15.371 | 3.186 | 3.184 | 3.181 | 3.181 | 3.166 | 3.165 | 12.791 | 12.793 | 12.793 | 390 | .390 | .390 | .390 | | Tフ | 50.795 | 15.348 | 3.187 | 3.187 | 3.195 | 3.195 | 3.143 | 3.164 | 12.757 | 12.743 | 12.744 | .390 | .390 | .388 | .388 | | TB | 50.827 | 15.340 | 3.194 | 3.195 | 3.191 | 3.191 | 3.161 | 3.1G1 | 12.758 | 12.748 | 12.745 | 390 | ,390 | .389 | .389 | 2-13-14 Tensile Specimen Dimensional Record Sheet (continuation) Measurement Operator Name: James Reseigh Signature: Janu brungh | Specimen | OAL | С | W ₁ (| mm) | W ₂ (| mm) | We | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| (mm) | |------------|--------|---------|------------------|--------|------------------|--------|-------|-------|--------|---------|--------|------------------|-------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T9 | 50.870 | 15.355 | 3.184 | 3.184 | 3.179 | 3.179 | 3.154 | 3.154 | 12.779 | 12.781 | 12.783 | ,388 | ,388 | .389 | ,389 | | TIO | 50.875 | 15.336 | 3.184 | 3.184 | 3.192 | 3.191 | 3.152 | 3.152 | 12.785 | 12.774 | 12.777 | .391 | .391 | ,390 | .39/ | | TII | 51.019 | 15.501 | 3.173 | 3.173 | 3.185 | 3.185 | 3.157 | 3.157 | 12.722 | 12.718 | 12.717 | ,391 | ,391 | .39/ | .39/ | | T12 | 51.060 | 15.497 | 3.182 | 3.183 | 3.178 | 3.178 | 3.151 | 3.151 | 12.712 | 12.711 | 12.717 | .39/ | .39/ | .389 | .389 | | T13 | 51.113 | 15.4197 | 3.175 | 3.174 | 3.175 | 3.175 | 3.156 | 3.154 | 12.727 | 12.722 | 12.710 | ,39/ | ,391 | .391 | .39/ | | TH | 51.310 | 15.510 | 3.198 | 3.198 | 3.185 | 3.186 | 3.182 | 3.183 | 12.715 | 17.717 | 12.709 | ,390 | .390 | .390 | .390 | | T15 | 51.152 | 15.488 | 3.184 | 3.183 | 3.183 | 3.183 | 3.140 | 3.160 | 12.724 | 12.7/5 | 12.713 | .390 | .390 | . 590 | .390 | | TILE | 51.152 | 15.494 | 3.187 | 3.186 | 3.184 | 3.185 | 3.140 | 3.161 | 12.714 | 12.709 | 12.705 | .392 | .391 | .39/ | , 390 | | TI | 51.170 | 15.4/92 | 3.182 | 3.183 | 3.174 | 3.174 | 3.143 | 3.165 | 12.450 | 12.651 | 12.653 | ,391 | , 391 | . 390 | . 390 | | T18 | 51.169 | 15.495 | 3.178 | 3.178 | 3.183 | 3.183 | 3.164 | 3.164 | 12.709 | 12.718 | 12.719 | ,391 | . 39/ | , 590 | . 390 | | T19 | 51.180 | 15.522 | 3.147 | 3.147 | 3.155 | 3.156 | 3.155 | 3.156 | 12.691 | 12.690 | 12.694 | .390 | ,390 | .387 | .389 | | T20 | 53.340 | 15.362 | 3.184 | 3.186 | 3.185 | 3.185 | 3.143 | 3.143 | 12.700 | 12.713 | 12.708 | . 393 | .393 | . 393 | . 393 | | T21 | 53.340 | 15.347 | 3.189 | 3.190 | 3.182 | 3.182 | 3.154 | 3.156 | 12.681 | 12.489 | 12.686 | . 394/ | ,394 | .39/ | ,391 | | T22 | 53.311 | 15.334 | 3.178 | 3.176 | 3.173 | 3.173 | 3.159 | 3.159 | 12.783 | 12.790 | 12.785 | . 392 | , 393 | . 391 | . 393 | | +23 | 53.324 | 15.319 | 3.170 | 3.170 | 3.170 | 3.171 | 3.154 | 3.157 | 12.482 | 12.470 | 12.484 | 393 | . 394 | ,393 | .393 | | T24 | 53.240 | 15.327 | 3.174 | 3.174/ | 3.178 | 3.178 | 3.142 | 3.141 | 12.403 | 12.597 | 12.598 | ,391 | .391 | . 393 | , 393 | | T25 | 53.320 | 15.308 | 3.174 | 3.174 | 3.174/ | 3.175 | 3.154 | 3.155 | 12.728 | 12.733 | 12.735 | .394/ | . 393 | .393 | . 393 | | T26 | 53.200 | 15.303 | 3.148 | 3.149 | 3.174 | 3.174/ | 3.150 | 3.151 | 12.737 | 12.729 | 12.726 | .392 | .39/ | .392 | , 392 | | T27 | 53.235 | 15.278 | 3.179 | 3.179 | 3.173 | 3.173 | 3.158 | 3.158 | 12.472 | 12.478 | 12.671 | ,393 | ,393 | .392 | .392 | | T28 | 53.240 | 15.283 | 3.171 | 3.171 | 3.178 | 3.179 | 3.148 | 3.148 | 12.839 | 12.833 | 12.831 | ,393 | .393 | .39/ | .391 | Measurement Notes (use back of sheet if needed): **Tensile Specimen Dimensional Record Sheet (continuation)** Measurement Operator Name: Jame hugil Signature: | Specimen | OAL | С | W ₁ | (mm) | W ₂ (| mm) | Wc | (mm) | | GL (mm) | | T
₁ (| mm) | T ₂ (| mm) | |----------|--------|---------|----------------|-------|------------------|--------|--------|-------|--------|---------|---------|------------------|-------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T29 | 53.195 | 15.278 | 3.183 | 3.183 | 3.174 | 3.175 | 3.160 | 3.140 | 12.681 | 12.485 | 12.679 | ,394 | .393 | .392 | .392 | | T30 | 53.251 | 15.241 | 3.169 | 3.170 | 3.173 | 3.173 | 3.153 | 3.153 | 12.477 | 12.479 | 12.675 | .393 | .373 | .393 | . 393 | | T31 | 53.147 | 15.247 | 3.177 | 3.176 | 3.174 | 3.176 | 3.149 | 3.149 | 12.751 | 12.742 | 12.741 | .393 | .393 | . 393 | .393 | | T32 | 53.220 | 15.235 | 3.167 | 3.167 | 3.173 | 3.173 | 3.1417 | 3.146 | 12.773 | 12.775 | 12.782 | .392 | . 392 | .390 | .390 | | T33 | 52.828 | 15.240 | 3.177 | 3.176 | 3.176 | 3.174 | 3.170 | 3.170 | 12.741 | 12.736 | 12.725 | . 390 | .390 | .390 | .391 | | T34 | 53.059 | 15.240 | 3.170 | 3.169 | 3.186 | 3.185 | 3.159 | 3.158 | 12.737 | 12.729 | 12.723 | ,393 | , 393 | .392 | .393 | | T35 | 53.143 | 15.217 | 3.169 | 3.149 | 3.182 | 3.18.2 | 3.140 | 3.160 | 12.445 | 12649 | 12.6-17 | .391 | .391 | .391 | . 391 | | T36 | 53.057 | 15.218 | 3.174 | 3.175 | 3.184 | 3.184 | 3.144 | 3.144 | 12.466 | 12.670 | 12.447 | .392 | .392 | .393 | . 392 | | T37 | 53.080 | 15.206 | 3.171 | 3.172 | 3.184 | 3.187 | 3.158 | 3.158 | 12.831 | 12.827 | 12.822 | .392 | , 592 | .391 | , 392 | | T38 | 53.146 | 15.109 | 3.150 | 3.150 | 3.149 | 3.149 | 3.144 | 3.167 | 12.731 | 12.732 | 12.745 | .393 | .393 | . 392 | .392 | | LI | 50,244 | 15.412 | 3.208 | 3.207 | 3.204 | 3.2de | 3.148 | 3.167 | 12.740 | 12.769 | 12.760 | .373 | .373 | .373 | .372 | | L 2 | SOZII | 15.398 | 3.185 | 3.184 | 3.184 | 3.186 | 3.171 | 3.171 | 12.741 | 12.755 | 12.762 | .377 | .377 | .378 | .378 | | L3 | 50.185 | 15.404 | 3.181 | 3.181 | 3.174 | 3.174 | 3.160 | 3.160 | 12-756 | 12.758 | 12.740 | .381 | ,381 | .381 | .382 | | 14 | 50.183 | 15.394 | 3.176 | 3.177 | 3.177 | 3.178 | 3.151 | 3.152 | 12,784 | 12.770 | 12.775 | .386 | ,386 | .386 | ,386 | | L5 | 50.180 | 15.417 | 3.181 | 3.181 | 3.191 | 3.190 | 3.152 | 5.151 | 12.839 | 12.854 | 12.859 | .386 | . 384 | .387 | .386 | | L6 | 50.179 | 15.4108 | 3.180 | 3.180 | 3.172 | 3.172 | 3.155 | 3.155 | 12.738 | 12.727 | 12.723 | .389 | ,389 | .389 | . 389 | | L7 | 50.180 | 15.401 | 3.182 | 3.182 | 3.182 | 3.183 | 3.154 | 3.154 | 12.702 | 12.696 | 12.694 | ,388 | ,388 | . 390 | . 390 | | 18 | 50.182 | | 3.188 | 3.188 | 3.185 | 3.185 | 3.160 | 3.159 | 12.739 | 12.744 | 12.749 | .388 | . 388 | ,390 | ,390 | | 49 | 50.181 | 15.385 | 3.180 | 3.180 | 3.177 | 3.177 | 3.155 | 3.155 | 12.712 | 12.704 | 12.7/3 | .386 | 386 | .386 | .386 | Measurement Notes (use back of sheet if needed): 138 Has a raised section in the middle of specifien 2-13-14 Tensile Specimen Dimensional Record Sheet (continuation) Measurement Operator Name: Tames Reseigh Signature: John Reseigh | Specimen | OAL | С | W ₁ (| mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | 03 | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|---------|------------------|-------|----------------|-------|-------|--------|--------|---------|--------|------------------|--------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | 110 | 50.192 | 15.403 | 3.191 | 3.191 | 3.178 | 3.178 | 3.154 | 3.15.3 | 12.716 | 12.719 | 12.715 | ,386 | . 386 | .387 | .387 | | 411 | 56.195 | 15.405 | 3.190 | 3.190 | 3.181 | 3.181 | 3.159 | 3.158 | 12.731 | 12.729 | 12.732 | .384 | .384 | , 384 | .386 | | L12 | 50.196 | 15.403 | 3.190 | 3.190 | 3.181 | 3.180 | 3.172 | 3.172 | 12.709 | 12.709 | 12.714 | .383 | .383 | .382 | .382 | | L13 | 50.197 | 15.412 | 3.186 | 3.186 | 3.185 | 3.185 | 3.171 | 3.170 | 127941 | 12.798 | 12.791 | .377 | .377 | ,378 | .378 | | L14 | 50,201 | 15.394 | 3.189 | 3.189 | 3.187 | 3.188 | 3.161 | 3.161 | 12.775 | 12.744 | 12.769 | ,370 | .370 | .349 | . 369 | | L15 | 50 888 | 15,385 | 3.203 | 3.204 | 3.193 | 3.192 | 3.161 | 3.161 | 12.813 | 12807 | 12.797 | ,387 | .387 | . 387 | . 387 | | L14 | 50877 | 15.376 | 3.1418 | 3.149 | 3.139 | 3.140 | 3.120 | 3.121 | 12.700 | 12.701 | 12.700 | ,384 | .384 | ,383 | .383 | | L 17 | 50.877 | 15.4120 | 3.156 | 3.154 | 3.14// | 3.140 | 3.125 | 3.124 | 12,644 | 12.651 | 12.664 | .378 | ,378 | , 378 | .378 | | LITA | 50.857 | 15.625 | 3.182 | 3.181 | 3.180 | 3.180 | 3.161 | 3.161 | 12.841 | 12.834 | 12.827 | .374 | .374 | .374 | .374 | | L18 | 50.461 | 15.417 | 3.190 | 3.191 | 3.707 | 3.206 | 3.171 | 3.172 | 12.746 | 12.745 | 12.734 | .384 | .386 | .386 | .386 | | L19 | 50.456 | 15.397 | 3.189 | 3.189 | 3.193 | 3.193 | 3.172 | 3.172 | 17.718 | 12.723 | 12.727 | .385 | ,385 | .386 | . 385 | | L20 | 50.465 | 15.399 | 3.190 | 3.190 | 3.192 | 3.193 | 3.158 | 3.157 | 12.840 | 12.848 | 12.843 | .377 | .377 | .379 | .379 | | L21 | 50.460 | 15,382 | 3.181 | 3.180 | 3.197 | 3.196 | 3.153 | 3.153 | 12605 | 12.599 | 12.598 | .372 | .372 | . 373 | . 373 | | L22 | 50.587 | 15.537 | 3.201 | 3.202 | 3.191 | 3.191 | 3.169 | 3.168 | 12.476 | 12.467 | 12.670 | .374 | , 374/ | .374 | . 374 | | L23 | 50.578 | 15.588 | 3.184 | 3.186 | 3.187 | 3.187 | 3.159 | 3.159 | 12.800 | 12.788 | 12.787 | .382 | ,382 | .382 | .382 | | L24 | 50.556 | 15.578 | 3.186 | 3.186 | 3.181 | 3.181 | 3.161 | 3.161 | 12.781 | 12.792 | 12781 | .385 | ,384 | ,386 | , 385 | | L25 | 50.531 | 15,442 | 3.174 | 3.173 | 3.178 | 3,179 | 3.154 | 3.154 | 12.729 | 12.730 | 12.732 | 388 | .388 | . 390 | ,39/ | | L26 | 50.729 | 15.391 | 3.184 | 3.184 | 3.187 | 3.187 | 3.143 | 3.143 | 12.757 | 12.751 | 12.749 | ,372 | . 373 | . 372 | ,374 | | L 27 | 50.721 | 15.404 | 3.188 | 3.188 | 3.184 | 3.184 | 3.163 | 3.163 | 12.727 | 12.723 | 12.739 | ,383 | ,384 | .384 | . 584 | | L28 | 50.700 | 15.389 | 3,192 | 3.191 | 3.193 | 3.193 | 3.143 | 3.161 | 12.735 | 12.744 | 12,748 | ,385 | ,385 | , 385 | .385 | Measurement Notes (use back of sheet if needed): L25 Has one side that is almost Plat, very Little cut out. Date: 2-13-14 ## **Tensile Specimen Dimensional Record Sheet (continuation)** Sheet 5 of 5 Measurement Operator Name: James Reseigh Signature: June hungit | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | Wc | (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|----------------|-------|----------------|-------|-------|-------|--------|---------|--------|------------------|-------|------------------|-------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L29 | 50,477 | 15.348 | 3.192 | 3.193 | 3.187 | 3.187 | 3./58 | 3.158 | 12.722 | 12.727 | 12.728 | . 389 | ,389 | , 390 | ,389 | | *L29 | 50.477 | 15.267 | 3.188 | 3.187 | 3.193 | 3.192 | 3.144 | 3.166 | 12.762 | 12.757 | 12.753 | .373 | .373 | .374 | .374 | | 430 | 50.492 | 15.271 | 3.190 | 3.189 | 3.184 | 3.184 | 3157 | 3.157 | 12.757 | 12.756 | 12.750 | .382 | .382 | .383 | . 383 | | L31 | 50.470 | 15.223 | 3.177 | 3.177 | 3.192 | 3.191 | 3.157 | 3.157 | 12.738 | 12.741 | 12.738 | .384 | .386 | . 387 | .387 | | L32 | 50.463 | 15.221 | 3.190 | 3.189 | 3.174 | 3.176 | 3.154 | 3.157 | 12.472 | 12.472 | 12.468 | .390 | .390 | .390 | . 390 | | L33 | 50.486 | 15.204 | 3.191 | 3.190 | 3.184 | 3.186 | 3.159 | 3.140 | 12.732 | 12.723 | 12.730 | .392 | .392 | 390 | .391 | | L34 | 50.583 | 15.186 | 3.188 | 3.189 | 3.184 | 3.183 | 3.141 | 3.161 | 12.757 | 12.756 | 12.754 | .392 | . 392 | . 392 | .392 | | 435 | 50.589 | 15.140 | 3.187 | 3.187 | 3.177 | 3.178 | 3.153 | 3.154 | 12.744 | 12.740 | 12.757 | ,394 | .394 | ,395 | , 395 | | L34 | 50.592 | 15.180 | 3.181 | 3.182 | 3.173 | 3.173 | 3.140 | 3.160 | 12.736 | 12.738 | 12,739 | ,394/ | .394 | .395 | .395 | | L37 | 50.5% | 15.167 | 3.181 | 3.179 | 3.182 | 3.182 | 3.166 | 3.165 | 12.703 | 12.711 | 12.710 | .394 | .394 | . 394 | .394 | | L38 | 50601 | 15.145 | 3.187 | 3.185 | 3.187 | 3.187 | 3.162 | 3.161 | 12.888 | 12.894 | 12.892 | , 393 | .393 | .393 | .393 | | L39 | 50.596 | 15.128 | 3.042 | 3.061 | 3.063 | 3.043 | 3.037 | 3.038 | 12.717 | 12.718 | 12.794 | .389 | .389 | .389 | .389 | | L40 | 50593 | 15.115 | 3.078 | 3.078 | 3.067 | 3.066 | 3.044 | 3.045 | 12.822 | 12.828 | 12.820 | .387 | .387 | .387 | .387 | | L41 | 50.608 | 15.226 | 3.082 | 3.082 | 3.083 | 3.084 | 3.050 | 3.050 | 12.736 | 12.740 | 12.746 | .384 | ,384 | .384 | .384 | | L4/2 | 50.672 | 15.219 | 3.100 | 3.100 | 3.095 | 3.094 | 3.084 | 3.085 | 12.489 | 12.690 | 12.690 | .375 | . 375 | , 374 | . 374 | | L32 | 50.463 | 15.221 | 3.190 | 3.189 | 3.176 | 3.176 | 3.15% | 3.157 | 12.742 | 12.742 | 12.7GB | ,390 | .390 | . 390 | ,390 | Measurement Notes (use back of sheet if needed): 2 L 29's * from 8 ag with unique 70 A-551-4-1-16 Post Test Dimensions Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - 4. Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. -
5. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ | (mm) | W: | (mm) | Wc | (mm) | | GL (mm) | | T ₁ | (mm) | T ₂ | (mm) | |----------|--------|--------|----------------|-------|-------|-------|-------|-------|--------|---------|--------|----------------|------|----------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L1 | 51.098 | 15.433 | 3.172 | 3.172 | 3.176 | 3.176 | 3.063 | 3.063 | 13.560 | 13.558 | 13.545 | .366 | .366 | .371 | .371 | | L2 | 51.049 | 15.419 | 3.170 | 3.171 | 3.156 | 3.155 | 3.091 | 3.091 | 13.485 | 13.489 | 13.493 | .369 | .369 | .374 | .374 | | L3 | 50.990 | 15.411 | 3.158 | 3.159 | 3.160 | 3.159 | 3.079 | 3.078 | 13.482 | 13.478 | 13.479 | .375 | .375 | .381 | .381 | | L4 | 50.598 | 15.413 | 3.172 | 3.172 | 3.171 | 3.172 | 3.127 | 3.127 | 13.151 | 13.147 | 13.147 | .383 | .383 | .385 | .384 | | L5 | 50.582 | 15.370 | 3.165 | 3.165 | 3.173 | 3.173 | 3.099 | 3.100 | 13.222 | 13.217 | 13.216 | .386 | .386 | .387 | .386 | | L6 | 50.597 | 15.417 | 3.178 | 3.177 | 3.165 | 3.165 | 3.076 | 3.077 | 13.101 | 13.103 | 13.112 | .388 | .388 | .387 | .387 | | *L10 | 57.920 | 15.684 | 3.011 | 3.012 | 2.963 | 2.963 | 2.580 | 2.581 | 19.161 | 19.163 | 19.159 | .281 | .281 | .283 | .283 | | *L11 | 57.091 | 15.627 | 3.024 | 3.025 | 3.004 | 3.005 | 2.769 | 2.769 | 18.329 | 18.315 | 18.300 | .304 | .304 | .293 | .293 | | 4/14 | Tensile Specimen Dimensional Record Sheet | continuation) | ĺ | |------|---|--|---| | 14 | 4/14 | 1/14 Tensile Specimen Dimensional Record Sheet (| 1/14 Tensile Specimen Dimensional Record Sheet (continuation) | Sheet 2 of 2 Measurement Operator Name: James Reseigh Signature: Jame Leng! | Specimen | OAL | С | W ₁ | (mm) | W ₂ | (mm) | Wo | (mm) | | GL (mm) | | T ₁ | (mm) | T ₂ | (mm) | |----------|----------------|--------|----------------|-------|----------------|----------|-------|-------|--------|---------|--------|----------------|------|----------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | *L12 | 59.436 | 15.593 | 3.022 | 3.020 | 2.967 | 2.968 | 2.608 | 2.608 | 20.226 | 20.257 | 20.274 | .292 | .292 | .278 | .278 | | *L13 | 57.023 | 15.651 | 2.977 | 2.978 | 3.080 | 3.080 | 2.644 | 2.645 | 18.361 | 18.338 | 18.351 | .299 | .299 | .306 | .306 | | T1 | 50.612 | 15.312 | 3.025 | 3.026 | 3.035 | 3.035 | 2.991 | 2.991 | 13.038 | 13.028 | 13.038 | .386 | .386 | .385 | .384 | | T2 | 50.809 | 15.375 | 3.189 | 3.188 | 3.185 | .3.185 | 3.156 | 3.157 | 12.972 | 12.985 | 12.968 | .387 | .387 | .388 | .388 | | T3 | 50.767 | 15.409 | 3.179 | 3.179 | 3.180 | 3.180 | 3.155 | 3.154 | 12.886 | 12.879 | 12.889 | .389 | .389 | .387 | .387 | | T4 | 51.249 | 15.368 | 3.170 | 3.170 | 3.156 | 3.155 | 3.133 | 3.134 | 13.215 | 13.218 | 13.225 | .387 | .387 | .385 | .385 | | T5 | 51.241 | 15.361 | 3.160 | 3.160 | 3.167 | 3.167 | 3.090 | 3.090 | 13.247 | 13.239 | 13.228 | .386 | .386 | .385 | .386 | | T6 | 51.322 | 15.409 | 3.170 | 3.170 | 3.109 | 3.108 | 3.132 | 3.132 | 12.963 | 12.972 | 12.968 | .385 | .385 | .385 | .385 | | T7 | 51.039 | 15.353 | 3.174 | 3.175 | 3.175 | 3.174 | 3.130 | 3.129 | 12.937 | 12.950 | 12.946 | .389 | .390 | .386 | .388 | | *T10 | 55.000 | 15.522 | 3.115 | 3.114 | 3.145 | 3.144 | 2.914 | 2.915 | 16.024 | 16.024 | 16.034 | .308 | .309 | .326 | .327 | | *T11 | 57.751 | 15.656 | 3.028 | 3.027 | 3.047 | 3.047 | 2.749 | 2.749 | 18.194 | 18.206 | 18.198 | .289 | .290 | .301 | .301 | | *T12 | 56.542 | 15.647 | 3.076 | 3.078 | 3.014 | 3.015 | 2.817 | 2.817 | 16.887 | 16.867 | 16.861 | .317 | .317 | .333 | .333 | HATTERN STATES | | | | | Tydline) | | | | | 13 | | | | | | | | | | | | | | | 19.00 | UV. | Measurement Notes (use back of sheet if needed): Note: * Tensile specimens L10, L11, L12, L13, T10, T11, T12, were broke in such a way that it made it very difficult to line the specimens back up for inspection. The Conical indent marks were very faint and difficult to measure. Foil 551-4 Post Test Dimensions Foil 551- 5 Post Test Dimensions Date: 7/23/14 Tensile Specimen Dimensional Record Sheet (continuation) - L/2 Measurement Operator Name: James Reseigh Signature: 7.75 7.75 (.305") (,305") OAL measurement instrument ID: A678 Expiration Date: 4/9/15 GL measurement instrument ID: A678 Expiration Date: 4/9/15 W measurement instrument ID: A678 Expiration Date: 4/9/15 T measurement instrument ID: A609 Expiration Date: 11/13/14 Temperature instrument ID: A52393 Expiration Date: 6/23/15 Wz WI Start of Measurements: 20.1C* End of Measurements: 20.1C* Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - 2. Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ (| mm) | W ₂ | (mm) | W _c (| (mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |-----------|--------|--------|------------------|-------|----------------|-------|------------------|-------|--------|---------|--------|------------------|------|------------------|------| | . ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | 551-5 L7 | 52.039 | 15.436 | 3.156 | 3.155 | 3.157 | 3.156 | 3.099 | 3.100 | 13.819 | 13.824 | 13.820 | .526 | .526 | .528 | .528 | | L8 | 52.116 | 15.468 | 3.157 | 3.157 | 3.138 | 3.140 | 3.102 | 3.103 | 13.775 | 13.773 | 13.778 | .527 | .527 | .525 | .525 | | L9 | 52.382 | 15.436 | 3.141 | 3.142 | 3.135 | 3.136 | 3.092 | 3.092 | 14.119 | 14.118 | 14.108 | .525 | .525 | .523 | .523 | | 551-5 T13 | 51.936 | 15.393 | 3.159 | 3.158 | 3.151 | 3.151 | 3.122 | 3.122 | 13.764 | 13.748 | 13.758 | .534 | .534 | .535 | .535 | | 551-4 L7 | 50.634 | 15.350 | 3.181 | 3.180 | 3.183 | 3.183 | 3.112 | 3.112 | 13.051 | 13.063 | 13.060 | .393 | .393 | .394 | .394 | | L8 | 50.575 | 15.398 | 3.207 | 3.206 | 3.190 | 3.190 | 3.178 | 3.178 | 13.053 | 13.045 | 13.049 | .391 | .391 | .394 | .394 | | *L9 | 50.549 | 15.412 | 3.187 | 3.187 | 3.187 | 3.188 | 3.168 | 3.166 | 12.806 | 12.790 | 12.803 | .389 | .389 | .391 | .39 | Measurement Notes (use back of sheet if needed): * 551-4-L9 Specimen broke at Conical indent mark, GL measurement difficult to align on indent mark, Delta 1. Reference positions for reduced section locations – corner at intersection of end tab and fillet. Locate center between corners (L/2) as zero position reference. It is not necessary to record dimension L. Delta 2. Conical indent marks for GL measurement are small, less than 0.1 mm typical. Measure indents center-to-center three times with optical comparator. Reset reference zero for each measurement (three independent measurements). - Locations to measure are indicated in the diagram. All dimensions in mm except as indicated by (in.). Record measurements to 0.001 mm excepting "C" and "OAL." - Record dimension "C" to 0.01 mm resolution. - 3. Record dimension "OAL" to 0.01 mm resolution. This can be measured with a caliper. - Measure W₁, W₂, and W_C two times. Reset width reference zero for each measurement (make two independent measurements at each location). - Measure thicknesses T₁ and T₂, twice at each location, approximately 3 mm either side of centerline. Measuring device contact surface should not cover the gage mark indent. Ball tip micrometer use is suggested for small contact area on indent face of specimen. Use minimum pressure needed to achieve consistent measurements. - 6. Record room temperature before starting and after completion of each group of measurements. | Specimen | OAL | С | W ₁ (| mm) | W ₂ (| mm) | W _c (| mm) | | GL (mm) | | T ₁ (| mm) | T ₂ (| mm) | |----------|--------|--------|------------------|-------|------------------|-------|------------------|-------|--------|---------|--------|------------------|------|------------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L1 | 50.710 | 15.361 | 3.192 | 3.192 | 3.196 | 3.196 | 3.161 | 3.163 | 12.726 | 12.735 | 12.728 | .523 | .523 | .521 | .521 | | L2 | 50.707 | 15.369 | 3.206 | 3.206 | 3.199 | 3.199 | 3.174 | 3.174 | 12.721 | 12.710 | 12.714 | .533 | .533 | .532 | .532 | | L3 | 50.701 | 15.377 | 3.191 | 3.191 | 3.196 | 3.196 | 3.168 | 3.168 | 12.699 | 12.693 | 12.695 | .540 | .540 | .535 | .535 | | L4 | 50.695 | 15.374 | 3.192 | 3.193 | 3.204 | 3.203 | 3.164 | 3.165 | 12.835 | 12.857 | 12.856 | .532 | .532 | .535 | .536 | | L5 | 50.694 | 15.395 | 3.193 | 3.193 | 3.195 | 3.195 | 3.175 | 3.175 | 12.688 | 12.691 | 12.692 | .506 | .506 | .516 | .516 | | L6 | 50.700 | 15.365 | 3.189 | 3.189 |
3.208 | 3.208 | 3.175 | 3.174 | 12.771 | 12.771 | 12.766 | .520 | .520 | .520 | .521 | | L7 | 50.699 | 15.385 | 3.194 | 3.194 | 3.202 | 3.202 | 3.176 | 3.176 | 12.726 | 12.729 | 12.731 | .544 | .544 | .541 | .541 | | L8 | 50.706 | 15.407 | 3.202 | 3.202 | 3.191 | 3.192 | 3.179 | 3.179 | 12.681 | 12.673 | 12.672 | .541 | .542 | .538 | .538 | | Date: | 5/12/14 | | |---|---------|--| | (10000000000000000000000000000000000000 | | | ## Tensile Specimen Dimensional Record Sheet (continuation) Measurement Operator Name: Signature: Jame Rungt | Specimen | OAL | С | W ₁ (| (mm) | W ₂ (| (mm) | W _c | (mm) | | GL (mm) | 0 | T ₁ (| mm) | T ₂ (mm) | | |----------|--------|--------|------------------|-------|------------------|-------|----------------|-------|--------|---------|--------|------------------|-------|---------------------|------| | ID | (mm) | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L9 | 50.709 | 15.389 | 3.201 | 3.201 | 3.195 | 3.197 | 3.169 | 3.169 | 12.767 | 12.765 | 12.761 | .542 | .542 | .540 | .541 | | L10 | 50.709 | 15.389 | 3.198 | 3.198 | 3.195 | 3.196 | 3.180 | 3.180 | 12.783 | 12.787 | 12.788 | .536 | .536 | .535 | .535 | | L11 | 50.708 | 15.406 | 3.189 | 3.189 | 3.187 | 3.187 | 3.166 | 3.165 | 12.642 | 12.636 | 12.632 | .533 | .533 | .534 | .534 | | L12 | 50.711 | 15.384 | 3.197 | 3.197 | 3.198 | 3.198 | 3.170 | 3.170 | 12.744 | 12.730 | 12.729 | .527 | .527 | .525 | .525 | | L13 | 50.710 | 15.406 | 3.195 | 3.196 | 3.187 | 3.187 | 3.173 | 3.172 | 12.752 | 12.748 | 12.740 | .519 | .519 | .518 | .518 | | L14 | 50.716 | 15.384 | 3.194 | 3.194 | 3.198 | 3.199 | 3.165 | 3.163 | 12.744 | 12.748 | 12.753 | .505 | .50+6 | .504 | .503 | | *L29 | 50.703 | 15.129 | 3.190 | 3.190 | 3.190 | 3.190 | 3.179 | 3.179 | 12.720 | 12.713 | 12.708 | .530 | .530 | .530 | .530 | | L30 | 50.704 | 15.172 | 3.195 | 3.194 | 3.201 | 3.201 | 3.179 | 3.180 | 12.768 | 12.770 | 12.769 | .541 | .541 | .547 | .547 | | L31 | 50.704 | 15.189 | 3.205 | 3.205 | 3.213 | 3.213 | 3.191 | 3.191 | 12.775 | 12.766 | 12.770 | .550 | .550 | .550 | .550 | | L32 | 50.699 | 15.207 | 3.201 | 3.201 | 3.215 | 3.214 | 3.189 | 3.189 | 12.732 | 12.734 | 12.733 | .550 | .550 | .554 | .554 | | L33 | 50.698 | 15.207 | 3.199 | 3.199 | 3.207 | 3.207 | 3.186 | 3.186 | 12.713 | 12.716 | 12.720 | .521 | .521 | .526 | .526 | | L34 | 50.699 | 15.244 | 3.198 | 3.197 | 3.217 | 3.217 | 3.187 | 3.187 | 12.715 | 12.720 | 12.718 | .550 | .551 | .555 | .555 | | L35 | 50.708 | 15.250 | 3.193 | 3.193 | 3.202 | 3.202 | 3.186 | 3.185 | 12.780 | 12.774 | 12.777 | .552 | .552 | .555 | .555 | | L36 | 50.697 | 15.275 | 3.203 | 3.203 | 3.206 | 3.207 | 3.183 | 3.184 | 12.762 | 12.769 | 12.776 | .554 | .554 | .554 | .554 | | L37 | 50.700 | 15.288 | 3.203 | 3.203 | 3.201 | 3.201 | 3.182 | 3.182 | 12.737 | 12.739 | 12.742 | .546 | .546 | .546 | .546 | | L38 | 50.697 | 15.322 | 3.200 | 3.200 | 3.222 | 3.221 | 3.193 | 3.193 | 12.761 | 12.758 | 12.761 | .548 | .548 | .549 | .549 | | L39 | 50.698 | 15.324 | 3.204 | 3.204 | 3.213 | 3.213 | 3.191 | 3.191 | 12.733 | 12.725 | 12.730 | .542 | .542 | .545 | .545 | | L40 | 50.696 | 15.346 | 3.198 | 3.198 | 3.218 | 3.218 | 3.192 | 3.192 | 12.691 | 12.703 | 12.702 | .541 | .541 | .541 | .542 | | L41 | 50.700 | 15.345 | 3.199 | 3.199 | 3.202 | 3.202 | 3.198 | 3.198 | 12.713 | 12.715 | 12.716 | .524 | .524 | .530 | .530 | Measurement Notes (use back of sheet if needed): L29 specimen is not full width Date: 5/12/14 ## Tensile Specimen Dimensional Record Sheet (continuation) Sheet 3 of 4 Measurement Operator Name: Signature: Jane Lungs | Specimen
ID | OAL
(mm) | С | W ₁ (mm) | | W ₂ (| mm) | W _c (mm) | | GL (mm) | | | T ₁ (mm) | | T ₂ (mm) | | |----------------|-------------|--------|---------------------|-------|------------------|-------|---------------------|-------|---------|--------|--------|---------------------|------|---------------------|------| | | | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | L42 | 50.698 | 15.363 | 3.194 | 3.193 | 3.197 | 3.197 | 3.184 | 3.184 | 12.754 | 12.750 | 12.751 | .531 | .531 | .531 | .532 | | T1 | 50.755 | 15.338 | 3.218 | 3.217 | 3.221 | 3.222 | 3.192 | 3.192 | 12.744 | 12.748 | 12.744 | .531 | .531 | .540 | .540 | | T2 | 50.764 | 15.341 | 3.174 | 3.174 | 3.173 | 3.174 | 3.145 | 3.146 | 12.731 | 12.720 | 12.724 | .543 | .543 | .539 | .539 | | Т3 | 50.772 | 15.384 | 3.202 | 3.203 | 3.191 | 3.191 | 3.174 | 3.175 | 12.684 | 12.691 | 12.682 | .541 | .541 | .540 | .540 | | T4 | 50.785 | 15.335 | 3.195 | 3.195 | 3.192 | 3.191 | 3.173 | 3.174 | 12.693 | 12.690 | 12.689 | .540 | .539 | .540 | .540 | | T5 | 50.783 | 15.382 | 3.196 | 3.196 | 3.198 | 3.198 | 3.168 | 3.167 | 12.747 | 12.739 | 12.746 | .539 | .539 | .531 | .531 | | T6 | 50.784 | 15.362 | 3.213 | 3.212 | 3.195 | 3.195 | 3.175 | 3.175 | 12.749 | 12.744 | 12.747 | .536 | .536 | .536 | .536 | | T7 | 50.788 | 15.385 | 3.196 | 3.196 | 3.201 | 3.201 | 3.172 | 3.172 | 12.672 | 12.671 | 12.664 | .538 | .538 | .539 | .539 | | T8 | 50.804 | 15.386 | 3.200 | 3.201 | 3.192 | 3.192 | 3.172 | 3.172 | 12.705 | 12.707 | 12.710 | .538 | .538 | .540 | .539 | | Т9 | 50.784 | 15.390 | 3.201 | 3.201 | 3.200 | 3.198 | 3.172 | 3.173 | 12.807 | 12.808 | 12.803 | .540 | .540 | .539 | .539 | | T10 | 50.787 | 15.394 | 3.195 | 3.194 | 3.194 | 3.194 | 3.171 | 3.171 | 12.736 | 12.743 | 12.734 | .539 | .539 | .539 | .539 | | T11 | 50.784 | 15.379 | 3.197 | 3.198 | 3.197 | 3.197 | 3.177 | 3.177 | 12.748 | 12.758 | 12.758 | .538 | .538 | .538 | .538 | | T12 | 50.809 | 15.383 | 3.203 | 3.203 | 3.195 | 3.196 | 3.173 | 3.173 | 12.678 | 12.678 | 12.680 | .541 | .541 | .539 | .539 | | T13 | 50.779 | 15.406 | 3.193 | 3.194 | 3.194 | 3.194 | 3.176 | 3.177 | 12.746 | 12.738 | 12.738 | .541 | .541 | .540 | .540 | | T14 | 50.781 | 15.397 | 3.211 | 3.211 | 3.191 | 3.192 | 3.181 | 3.181 | 12.693 | 12.691 | 12.691 | .539 | .539 | .537 | .537 | | T15 | 50.766 | 15.384 | 3.187 | 3.186 | 3.203 | 3.203 | 3.165 | 3.164 | 12.695 | 12.705 | 12.708 | .543 | .543 | .538 | .538 | | T16 | 50.748 | 15.395 | 3.210 | 3.211 | 3.193 | 3.193 | 3.172 | 3.172 | 12.751 | 12.755 | 12.746 | .538 | .539 | .540 | .540 | | T17 | 50.740 | 15.397 | 3.191 | 3.191 | 3.202 | 3.202 | 3.175 | 3.175 | 12.720 | 12.726 | 12.724 | .546 | .546 | .543 | .543 | | T18 | 50.729 | 15.403 | 3.213 | 3.214 | 3.195 | 3.196 | 3.171 | 3.171 | 12.672 | 12.664 | 12.662 | .529 | .530 | .539 | .539 | Measurement Notes (use back of sheet if needed): 71 | Date: 5/12/
Measuremen | | Name: | Te | nsile Sp | ecimen | | | | Sheet (co | , | ation) | | Shee | et 4 of | 4 | |---------------------------|-------------|--------|---------------------|----------|---------------------|-------|---------------------|-------|-----------|--------|--------|---------------------|------|---------------------|------| | Specimen
ID | OAL
(mm) | С | W ₁ (mm) | | W ₂ (mm) | | W _c (mm) | | GL (mm) | | | T ₁ (mm) | | T ₂ (mm) | | | | | (mm) | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #3 | #1 | #2 | #1 | #2 | | T19 | 50.969 | 15.421 | 3.198 | 3.198 | 3.203 | 3.204 | 3.163 | 3.162 | 12.800 | 12.804 | 12.809 | .534 | .534 | .538 | .538 | P RE | | | | | | | | | | 10000 | | | | | _ | | | | | | | | | | | | | | | | | | Measurement Notes (use back of sheet if needed):